
EUROGRAPHICS 2010 / H. P. A. Lensch and S. Seipel Short Paper

Data-parallel Micropolygon Rasterization

C. Eisenacher 1 and C. Loop 2

1University of Erlangen-Nuremberg, 2Microsoft Research Redmond

Abstract
We implement a tile based sort-middle rasterizer in CUDA and study its performance characteristics when used
as a backend for adaptive tessellation down to micropolygons. Tessellation and bucketing map very well to the
data-parallel paradigm of CUDA, and the majority of time is spent with rasterization. Despite this, our fastest
implementation is able to reach 30-50% of the hardware rasterization performance of an Nvidia GTX 280. Overall
we are able to rasterize 4 M textured and Phong shaded microquads into a 1600x1200 framebuffer at 10-12 fps.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Graphics processors, Parallel processing

1. Introduction

Modern GPUs have evolved into general purpose floating
point processing devices containing many parallel cores with
wide SIMD units. They are fast and flexible enough that
tile based sort-middle triangle rasterization, implemented in
software on such a GPU, has been proposed as alternative to
fixed-function rasterization units [SCS∗08].

At the same time real-time rendering with micropolygons
became feasible. Higher-order surfaces are tessellated di-
rectly on the GPU and the resulting triangles are processed
by the traditional pipeline. However, this creates many tiny
triangles that are difficult to process as memory access pat-
terns and SIMD efficiency degrade with small polygons.

Fatahalian et al. [FLB∗09] analyze the percentage of
point-in-polygon tests that result in hits, or sample test ef-
ficiency (STE), of several data-parallel rasterization algo-
rithms. To understand how these results translate onto exist-
ing hardware we implement and analyze a sort-middle ras-
terizer for rational bicubic Bézier patches in CUDA.

Interestingly enough a simple 8x8 stamp, for which Fata-
halian et al. predict a STE of only 2%, translates to 30-50%
of the hardware rasterizing performance in our setting.

2. Previous Work

The concept of a software sort-middle [MCEF94] rasterizer
regained a lot of attention with Larrabee [SCS∗08]. The au-
thors argue that, while it probably cannot outperform custom
silicon, it is “fast enough”, undoubtedly more flexible and
should scale well with an increasing number of cores.

Many rasterizers use stamps: Multiple samples test in par-
allel whether they are inside the half-spaces defined by the
edges of a polygon [Pin88]. This requires one dot product
per edge and sample. A sample is covered if all values are
positive. While a hierarchical approach [Gre96, SCS∗08] is
generally attractive, we only use tile sized stamps.

REYES was developed as an off-line renderer at Pixar in
the mid 1980’s [CCC87]. It adaptively subdivides higher or-
der surfaces until their screen space size is small (bound and
split). Then they are diced (tessellated) into regular grids of
micropolygons, i.e. polygons with an area on the order of one
pixel [AG99]. The grid is shaded and pixel coverage is deter-
mined by stochastic super-sampling of the micropolygons.
Our overall algorithm is inspired by the REYES pipeline.

Owens et al. [OKTD02] implement REYES with
Catmull-Clark subdivision surfaces on the Stanford Imagine
stream processor. They subdivide depth first until all edge
lengths are below a threshold and generate fragments that
are composited into the final image. They note that over 80%
of the total time is spent subdividing patches.

In 2008 Patney and Owens demonstrate a hybrid GPU
approach [PO08]: They subdivide Bézier patches breadth-
first and dice them using CUDA. Then they transfer mi-
cropolygons to the hardware rasterizer for sampling. Eise-
nacher et al. [EML09] refine the implementation of Patney
and Owens and try to generate as few polygons as possible
to minimize transfer overheads. We use a modified version
of their algorithm as front end for our rasterizer.

c© The Eurographics Association 2010.

http://www.eg.org
http://diglib.eg.org


C. Eisenacher & C. Loop / Data-parallel Micropolygon Rasterization

3. Data-Parallel Micropolyon Rasterization

We divide the screen into equally sized tiles with associated
buckets and perform the following four steps:

Bound and Split: First we adaptively subdivide bicu-
bic Bézier patches until the screen space extent of the sub-
patches is smaller than a given threshold.

Dice: Then we evaluate a 4x4 grid for each sub-patch and
shade the vertices. Position and color are written to a VBO.

Parallel Bucketing: Then we sort the index of each sub-
patch into buckets. A single bucket contains the indices of
all patches that cover its associated screen space tile.

Tile Based Rasterization: Finally we load the grids for
each tile from the VBO and sample the micropolygons.

3.1. Bound and Split

subdivide

urPatches oracle

patch queue

scan
subdivided

Patches

MVP

Figure 1: Bound and split: Patches are examined and sub-
divided breadth-first until they are small in screen space.

Our subdivider, visualized in Figure 1, follows the imple-
mentation of [EML09] closely: We start by transforming the
original urPatches into clip space using the composite MVP
matrix and place them into a double buffered patch queue.

An oracle kernel examines all patches in parallel and de-
cides whether to cull, keep or subdivide them in a 1:4 split.
The decision is written in the form of storage requirements:
0 slots for cull, 1 slot for keep, 4 slots for subdivide.

A parallel scan [HOS∗08] is used to compute the prefix
sum of this storage decision array. This directly generates
the storage locations where the subdivision kernel will store
patches. For details we refer the reader to [EML09].

We subdivide in the parameter domain to save memory
and bandwidth, and iterate until all patches are smaller than a
certain screen space size, e.g. 4x4 pixel. A threshold smaller
than the tile size guarantees that a sub-patch covers at most
four adjacent tiles, and simplifies bucketing considerably.

3.2. Parallel Bucketing

Once all patches in the patch queue satisfy our criteria, we
dice them into 4x4 grids and sort the index of each grid into
the buckets of the tiles it overlaps. Our goal is to store a
variably sized list of covering patches for each bucket.

Patches

IDX

LISTSCOUNT START

- - 0 0 1 1 0 0 - - 2 - 3 - 1 -

4 0

0

0

2

2

1

00

0

0

0

2 6

9

9

7

0

6

99

6

9

9

Figure 2: To bucket the subdivided patches we use CUDA’s
atomicAdd(). This counts the patches per bucket and de-
livers the indices of the patch inside the buckets at the same
time. Using those and the prefix sum of the counters we com-
pute the final positions of the patches in the bucket lists.

To facilitate this in parallel and with variable list lengths,
we organize the lists as shown in Figure 2: COUNT stores
the length of the list at each bucket, LIST S contains the ac-
tual lists and START contains the start indices for each sub-
list. We create these lists with the following algorithm:

Init: We initialize the entries of COUNT to zero and al-
locate a temporary buffer IDX . The latter stores the indices
of each patch inside the per bucket lists of the tiles it over-
laps. Note that each patch covers at most four adjacent tiles
(top-left, top-right, bottom-left, bottom-right) at this point.

Address Calculation: For each patch we perform an
atomicAdd(&COUNT [tileID0..3], 1) on the up to four
tiles it overlaps. That way we count the number of patches
that will be stored in each bucket correctly, despite multiple
threads accessing the same bucket simultaneously. The val-
ues returned by the call are the indices of the patch in the
sub-list of each bucket and we store them in IDX .

Bucket Write: After the addresses are calculated, we
compute START as the prefix sum of COUNT using a
parallel scan [HOS∗08]. Combining START and IDX we
can now sort the patches into the buckets: For each patch
in the patch queue we store the index of its grid at
LIST S[START [tileID0..3]+ IDX0..3].

3.3. Tile Based Rasterization

Using COUNT and START we know for each tile, how
many and which grids we need to rasterize from LIST S.
We launch one CUDA thread block per tile, allocate one
lightweight thread per pixel and let the CUDA scheduler
handle the load balancing. After loading grid vertices and
colors into shared memory, each thread loops over all quads
in the grid. It computes edge equations for each quad and
tests for coverage. This requires four dot products and a
sign test [Pin88]. For covered samples we interpolate z from
the quad vertices, perform a z-test and store the interpolated
color if necessary. Z- and color-buffer values are stored in
one register each.

c© The Eurographics Association 2010.

54



C. Eisenacher & C. Loop / Data-parallel Micropolygon Rasterization

For multisampling, having each thread test its subsamples
leads to poor SIMD efficiency. Instead, we use same thread
block size and divide our tile into sub-tiles, so that neighbor-
ing threads test neighboring sub-samples for coverage, and
resolve the final pixel color via shared memory. This im-
proves SIMD efficiency and is significantly faster. To avoid
unnecessary computation we use a few simple bounding box
tests, saving about 30% in total time.

We repeatedly and redundantly compute edge equations in
each thread and for each sub-tile. This obviously wastes con-
siderable amounts of computation but avoids complicated
access patterns into shared memory. Computing edge equa-
tions during dicing and loading edge-equations instead of
grid positions seems like a promising tradeoff to explore.

4. Results and Discussion

To test our rasterizer we render the familiar Utah teapot, the
bigguy and the killeroo model with the view points shown
in Figure 3. All results are measured on an nVidia GTX 280
using CUDA 2.1 on Windows XP.

Figure 3: The Utah teapot, the bigguy and the killeroo ren-
dered with our system; 32, 3570 and 11532 urPatches.

4.1. Bound and Split

Subdivision in the parameter domain makes the oracle
computationally more expensive, but subdivision becomes
trivial and we need considerably less bandwidth. Over-
all, we can bound and split 29.4 M patches per second
for the killeroo model. This is highly competitive: Patney
and Owens [PO08] report 2.0 M/s on a GTX 8800, Eise-
nacher et al. [EML09] report 13.2 M/s on a GTX 280.

4.2. Parallel Bucketing

Small tiles mean more buckets and lower probability of con-
flicting parallel writes to the same bucket that need to be
synchronized. On the other hand, smaller tiles mean more
patches cover multiple tiles and we need to store (and raster-
ize) multiple copies.

We render a 1600x1200 image of the killeroo with a
screen space bounding box less than 4x4 pixels. Table 1
shows the effect of different tile sizes when sorting the re-
sulting 270k sub-patches. Increasing the tile size reduces the

tiles per patch from 2.45 for 4x4 tiles to 1.14 for 32x32 tiles.
However, despite having to write over twice as many indices,
sorting into 4x4 tiles is faster overall, as we have to deal with
considerably less conflicting writes on average.

tile size 4x4 8x8 16x16 32x32
address calc. [ms] 2.48 2.55 2.94 4.05
bucket write [ms] 0.34 0.34 0.33 0.33
patches written 662 k 445 k 352 k 309 k
tiles per patch 2.45x 1.65x 1.30x 1.14x

Table 1: Bucketing 270k sub-patches using different tile
sizes. Large tiles require more synchronization during ad-
dress calculation, even though less writes occur.

4.3. Tile Based Rasterization

Similar to parallel bucketing, the performance of tile based
rasterization is dependent on the tile size. We render the
same 1600x1200 image of the killeroo model with 4x4, 8x8
and 16x16 tiles and different scales. As a different tile sizes
have different amounts of overlap, Figure 4 visualizes the ms
per frame vs. the number of patches actually rasterized.

0 

50 

100 

150 

200 

250 

300 

0 250000 500000 750000 

[ms] 

[# of patches] 

4x4 tiles 

8x8 tiles 

16x16 tiles 

Figure 4: Milliseconds per frame for rendering the killeroo
at four different zoom levels. Patches that cover multiple tiles
are rasterized multiple times. Using 8x8 tiles performs best.

For small tiles less unnecessary coverage tests are per-
formed for pixel sized polygons and more tiles are scheduled
on a multiprocessor concurrently to hide latency. However,
very small tiles require more concurrent thread blocks than
the scheduler can handle, leaving resources unused. 8x8 tiles
seem to hit a sweet spot, outperforming 4x4 tiles and being
considerably faster than 16x16 tiles despite more overlap.

4.4. Overall performance

Table 2 shows timings for a few selected screen sizes and set-
tings. We use 8x8 pixel sized screen tiles and subdivide until
the screen space bounding box (BB) of a patch is smaller
than 8x8 or 4x4 pixels. We list the number of patches raster-
ized and the complete time needed to render and display a
frame with one or four samples per pixel (spp).

c© The Eurographics Association 2010.

55



C. Eisenacher & C. Loop / Data-parallel Micropolygon Rasterization

512x512 1600x1200
8x8 BB 4x4 BB 8x8 BB 4x4 BB

# 1 spp 4 spp # 1 spp 4 spp # 1 spp 4 spp # 1 spp 4 spp
teapot 25k 6.9 10.4 61k 12.0 19.0 138k 26.0 45.8 348k 54.9 95.6
big guy 32k 7.8 12.2 76k 13.7 22.6 165k 35.0 63.0 404k 71.1 129.4
killeroo 38k 9.1 14.4 84k 14.7 23.7 183k 38.3 70.0 445k 77.0 140.6

Table 2: Total time per frame in ms using 8x8 screen tiles. Patches are subdivided until their bounding box (BB) is smaller than
8x8 or 4x4 pixel. Each patch is diced into a 4x4 grid and shaded. For each grid 9 microquads are rasterized.

To show that the dominating cost is the actual rasteriza-
tion, we present a breakdown in Table 3. For comparison we
also give timings for a hybrid approach, where we render
the VBO containing vertices and colors using the hardware
pipeline and a pre-computed index buffer. For this example
our software rasterizer achieves about 48% of the total fps of
the hybrid approach. Note that we rasterize almost twice as
many microquads as patches operlap multiple tiles.

Hybrid 1 spp 4 spp 16 spp
System overhead 4.6
Bound & Splits 7.7 + 1.5
Evaluate grid 6.0
Count 2.5
Sort 0.3
Setup 8.2
Sampling 19.0 46.2 110.6 261.4
Total 37.2 77.0 140.6 290.2

Table 3: Rendering the killeroo at 1600x1200. Using 8x8
tiles and 4x4 bounding boxes, we create 270 k sub-patches
or 2.4 M microquads for the HW rasterizer. Due to patch
overlap we test 445k grids, or 4 M microquads. Time in ms.

5. Conclusion and Future Work

We have presented and analyzed a bucketing rasterizer for
micropolygons written in CUDA. Tessellation and sorting
map well to the data-parallel model and the dominant cost is
rasterization.

Our implementation can be improved in many areas:
Cracks resulting from adaptive subdivision need to be taken
care of, and displacement mapping, which is a major sell-
ing point for micropolygons, is difficult with the tiny tiles
favored by our current implementation. High overlap results
in unnecessary coverage tests and tessellating into 4x4 grids
introduces a lot of redundant shading for the edge vertices.
Larger tiles and a more hierarchical approach might leverage
many of those issues.

Of course a software rasterizer will always consume com-
putational resources for an operation that is effectively free
on current GPUs. While today’s hardware is not built for mi-
cropolygons, it is an encouraging result, that a comparably

simple implementation with theoretical STE of only 2%, can
perform within the reach of highly optimized silicon.

Acknowledgements: We want to thank the anonymous
reviewers for their work and detailed feedback, as well as
Bay Raitt of Valve Software for the big guy model. The
Killeroo model is courtesy of Headus (metamorphosis) Pty
Ltd (available at http://www.headus.com).

References
[AG99] APODACA A. A., GRITZ L.: Advanced RenderMan:

Creating CGI for Motion Picture. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 1999, ch. 6, pp. 153–154.

[CCC87] COOK R. L., CARPENTER L., CATMULL E.: The
Reyes image rendering architecture. SIGGRAPH Comput.
Graph. 21, 4 (1987), 95–102.

[EML09] EISENACHER C., MEYER Q., LOOP C.: Real-time
view-dependent rendering of parametric surfaces. In I3D ’09:
Proceedings of the 2009 symposium on Interactive 3D graphics
and games (New York, NY, USA, 2009), ACM, pp. 137–143.

[FLB∗09] FATAHALIAN K., LUONG E., BOULOS S., AKELEY
K., MARK W. R., HANRAHAN P.: Data-parallel rasterization
of micropolygons with defocus and motion blur. In HPG ’09:
Proceedings of the Conference on High Performance Graphics
2009 (New York, NY, USA, 2009), ACM, pp. 59–68.

[Gre96] GREENE N.: Hierarchical polygon tiling with coverage
masks. In SIGGRAPH ’96: Proceedings of the 23rd annual con-
ference on Computer graphics and interactive techniques (New
York, NY, USA, 1996), ACM, pp. 65–74.

[HOS∗08] HARRIS M., OWENS J. D., SENGUPTA S., ZHANG
Y., DAVIDSON A.: CUDPP: CUDA data parallel primitives.

[MCEF94] MOLNAR S., COX M., ELLSWORTH D., FUCHS H.:
A sorting classification of parallel rendering. IEEE Computer
Graphics and Applications 14, 4 (1994), 23–32.

[OKTD02] OWENS J. D., KHAILANY B., TOWLES B., DALLY
W. J.: Comparing Reyes and OpenGL on a stream ar-
chitecture. In HWWS ’02: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware
(2002), Eurographics Association, pp. 47–56.

[Pin88] PINEDA J.: A parallel algorithm for polygon rasteriza-
tion. SIGGRAPH Comput. Graph. 22, 4 (1988), 17–20.

[PO08] PATNEY A., OWENS J. D.: Real-time REYES-style
adaptive surface subdivision. ACM Transactions on Graphics
(Proceedings of ACM SIGGRAPH Asia) 27, 5 (Dec. 2008).

[SCS∗08] SEILER L., CARMEAN D., SPRANGLE E., FORSYTH
T., ABRASH M., DUBEY P., JUNKINS S., LAKE A., SUGER-
MAN J., CAVIN R., ESPASA R., GROCHOWSKI E., JUAN T.,
HANRAHAN P.: Larrabee: a many-core x86 architecture for vi-
sual computing. ACM Trans. Graph. 27, 3 (2008), 1–15.

c© The Eurographics Association 2010.

56


