
EUROGRAPHICS 2010 / H. P. A. Lensch and S. Seipel Short Paper

Finding Approximate Ambigrams and Making them Exact

J. Loviscach

Fachhochschule Bielefeld (University of Applied Sciences), Germany

Abstract
Rotational ambigrams are arrangements of letters that can also be read upside down. Existing approaches to
automatically create such ambigrams employ highly artificially-looking and difficult-to-read typefaces. In contrast
to that, the ambigram generator introduced here is based on a vector graphics editor that ensures perfect symmetry.
A major component is an algorithm to smoothly fuse different vector shapes. As not all words lend themselves to be
converted into legible ambigrams, an optional preparatory step is included. In this step, a dictionary is searched
for words that are shaped almost symmetrically so that meaningful input is provided to the editing stage.

Categories and Subject Descriptors (according to ACM CCS): I.3.4 [Computer Graphics]: Graphics Utilities—
Graphics editors

1. Introduction

Ambigrams—a term already used by Hofstadter [Hof85,
p. 276] in the Eighties—have gained much popularity in
current popular culture through Dan Brown’s novel “Angels
and Demons” [Bro03] and its film adaptation. This paper ad-
dresses a major type of rotational ambigrams, namely letter-
ing that forms a point-symmetric shape. For a tiny number of
words such as “SOS” and “pod” this is easy to achieve with
little or even no change to the shapes. Typically, however,
tweaking the shapes of given word to turn it into an ambi-
gram requires an artist’s eye and much experimentation, see
for instance the typographic works by John Langdon, who
was one major source of inspiration for Dan Brown’s novel.

Currently available software that helps to automatically
create ambigrams is based on special typefaces. Their letters
look like other—upright—letters when read upside down.
The legibility, however, is poor in most cases. In addition,
the uncommon forms of the letters direct the reader’s atten-
tion to the circumstance that the text forms an ambigram.
A good ambigram looks like normal text on first sight and
reveals its symmetry only on closer inspection.

This work presents a two-pronged approach to create am-
bigrams with common typefaces:

1. A dictionary is used to find promising candidate words
whose shapes are already close to symmetric. Even
though this step is optional, replacing a word by a syn-
onym that has more intrinsic symmetry benefits the result

strongly. In addition, the best candidates for ambigrams
in the rank lists produced by the search include many sur-
prise findings and thus support a serendipitous approach.

2. An vector graphics editor with built-in enforced symme-
try is used to tweak the shapes, see Figure 1. This ed-
itor possesses standard features but employs a freehand
curve drawn by the user to cut the shapes. The remaining
parts of the shapes are copied, rotated by 180 degrees and
smoothly connected to the original ones.

To the author’s best knowledge, this paper is the first to
pick up the topic of ambigrams in computer graphics re-
search. Further contributions to the state of the art are the
application of a dictionary-based search to vector graphics
shapes and the smooth fusion of vector graphics shapes.

This paper is structured as follows: Section 2 discusses
related work. Section 3 introduces the method for finding
words that are almost ambigrams. The ambigram editor—
the main part of the prototype application—is described in
Section 4. The details about the smooth fusing process are
given in Section 5. Section 6 concludes this paper and points
out options for future development.

2. Related work

Several approaches to create ambigrams have already
been implemented. Probably the earliest one is Ambi-
matic [Hol09]. It employs a specific, highly stylized and
poorly legible typeface that contains all combinations of

c© The Eurographics Association 2010.

http://www.eg.org
http://diglib.eg.org

J. Loviscach / Finding Approximate Ambigrams and Making them Exact

Figure 1: The ambigram editor offers standard editing func-
tions but enforces symmetry. It cuts the shapes along a path
drawn by the user, mirrors them and connects the mirrored
ones to the original ones with adjustably soft transitions. The
input is displayed in the top half, the output in the lower half.

one character (to be read in normal orientation) fused
with another character (to be read upside down). Glyphu-
sion [Hun10], a newer approach that is part of several other
products, is based on a blackletter typeface in which a sin-
gle character may turn into one or two characters when read
upside down. To achieve this effect, the different characters
are only distiguished by strokes that are tiny in comparison
to the vertical blackletter base strokes. This reduces the leg-
ibility, which is also true for the optional “Script” typeface,
which rather looks like bold slanted sans-serif.

Automatic symmetrization has been handled by introduc-
ing constraints into vector graphics editing software. For in-
stance, Ryall et al. [RMS97] describe an editor for graph-
type diagrams that can enforce—among others—symmetry
constraints among the nodes. Igarashi et al. [IMKT97] pro-
pose to automatically detect—among others—approximate
symmetries between stroke input and existing lines and then
make these symmetries exact. As the application addressed
in this work is concerned with the symmetrization of shapes
that already exist, these approaches do not easily carry over.

There is much previous work in computational geome-
try on detecting approximate and partial symmetries. For in-
stance, Mitra et al. [MGP06] build on the idea of the Hough
transform by looking for clusters in the seven-dimensional
parameter space of local symmetries (translation, reflection,
rotation, uniform scaling). Li et al. [LLM07] use a different
clustering approach to detect incomplete symmetries built
from translation, reflection, and n-fold rotation of point sets.
Even though the problem introduced in this paper is con-
cerned with a known symmetry, namely point symmetry,
methods such as these could help finding ambigrams with
unexpected symmetries.

Z o pod dop pd oxo ped z peed deep pooed sos speeds VA SOS

mu SSS SS S xxx xx x possessed s sexes sees esse noon e O non

ose ene sums seas xerox suns passed VGA um one ere neon dup

paned goll pard ore axe damp panned eme coos VOA pand paced

HI oose allege erne nan Gog ecce slings mou umm fleg cees NIH

cones fl senescence prod GB sus naan X sars ease are meu NH

sass Pd cos gall azo dorp paved muumuu sans cores HRH comes

sacs parted pud Ill AV Q enema mom anna sources pad spends

penned mon masseur urn pond spoils Hf SSE ensue mna sons usu

ane scepterless emma ama acre rear SIDS anoa flog sess dump

senses spreads mem poured encore rum G flung reamer arna N

zax seams meou ocas cess aroma BR BBB BB B evoe paired posted

gull men NEH run proud t RI mammon man roomer pearl seco zeas

roamer eave moor HR moan manana ENE roam ropier anno acne

mana saves pend sens spade nona Dung acme vums thug seance

seasons noma aeon vees apostle nun COD cosmos moon roarer DMD

ess peaked anemone sonorous H pasted mummer overcomes agile

mamma lig cannons mermen menu mama CNS ER ma mam mean

voes OB mun GED DD D merman period sox GUI Ulf coms arena

concuss separative assn OMB MSW on suss cams murmur potted

sous USS xxxv paid sac anaphora nana sorceress ace moron KGB

peeved BBQ negation dip museum nom aero sers flag armature MGM

eses Duong ooms mona saws sumo marm arm DI sez razor DOD

more paled anon serves nema OD punctured serous ers sex nemn

meer oons seems emu copies staplers cases maun room Rf secs

evacuee nu era punctual caprice coco roman ren INRI fingerling

area servos momma macron erasure ears MM mere KB oca pyramid

mum oos amu cans GU erase am GI novena careers see erasers

reasoner DOB macaroon once accuse cars RD zea decamp roon oses

esne commence arcane poled monomer KKK manna gadi anan an

ossa manor noun meson massacre stings USCG amen oes newsmen

savors coo mason ann ons caucus neuron quench samosa antique

Greg carouse cancerous racer roar colleges nam drop ecu accesses

vaes CBS ensnare spicule SC source Oreg RBI accuses enure moa

sense cons acres eclipse maroon engine ewe verruca oon pastel

reen patted zoea cares essence om ff orca sevens semaphores Kung

amor mara EOE zones sese nosecone ors mouser oars zoos pecked

E fingering NR prerecord OH excesses monsoon pooled pseud averse

raun sacrilegious pronominal macro neaten pl eases een verses emeu

pectized freq roadsweepers Kong OS cease poetized zuz cens maser

WA owse precedent USA zeros ammo sauce ram CID naam parental

necromancer zees vaus ou cosiness summons n zoa en spandrels

succors IOU rapier recon nonzero oversee newsman UBS fling VHS

competence sentence mare secures RN DH pail sax screams pounded

oceans nonpartisan eas anemometer

Figure 2: An automatic process is employed to rank ap-
proximately 76,000 unique entries of a dictionary by their
amount of point symmetry. The typeface of this example is
“Aachen”; the best-ranked entries are shown.

In a later work, Mitra et al. [MGP07] move past symme-
try detection. They present a method to find approximate
symmetries of polygonal 3D meshes, deform them to en-
hance the symmetry, or remesh them to create fully symmet-
ric shapes. In principle, this approach could be applied to the
task at hand, but would require a translation back and forth
from cubic or quadratic curves to a mesh. This would reduce
the graphical quality of the result.

3. Finding approximate ambigrams

The majority of words in the English language is not very
promising when it comes to creating an ambigram. It is hard
to see how words such as “Eurographics” could be rendered
as point-symmetric shapes while retaining a basic amount of
legibility. Hence, it is beneficial to start with looking for a
word that lends itself well to form an ambigram. To this end,
the software prototype steps through a dictionary, creates the
representation for each word in a font specified in advance,
checks for the degree of point symmetry and produces a rank
list ranging from hits to near hits to weak hits, see Figure 2.
This process is described in the following.

For testing purposes, a dictionary was compiled from a
multitude of word lists found on the Internet. The largest list
that has been incorporated stems from the American English
spell check dictionary of OpenOffice.org. In total, the result-
ing dictionary contains nearly 76,000 unique words, a tiny
fraction of which consists of acronyms or single letters.

To automate the ranking, an algorithmic definition of the
degree of symmetry of a shape is required. To make the ap-
proach robust and simple, the words are rendered as bitmaps
using standard built-in functions at a size of 30 points and a
pixel depth of one bit, i. e. without antialiasing. Each bitmap
is checked for symmetry under rotation by 180◦ degrees
about the center of mass of the pixels that are “on.”

A simple approach to measuring the deviation between
the original shape and its (virtual) rotated copy would be
to count how many pixels have different values for the two
shapes, i. e. to determine the area of the symmetric set differ-
ence. This approach, however, would not take into account
how far one shape extends beyond the other. A small remote
mass of pixels in the difference set may not be hidden by

c© The Eurographics Association 2010.

26

J. Loviscach / Finding Approximate Ambigrams and Making them Exact

shape changes as easily as a large near mass. Hence, the
counting approach is too simple.

A well-known measure of the geometric size of the devia-
tion between the original shape and its (virtual) rotated copy
is the Hausdorff distance [HKR93]. The Hausdorff distance,
however, would be overly strict, as a single outlier can ruin
the distance result of an otherwise perfect shape.

To blend these methods of measuring the deviation from
perfect symmetry, the proposed method proceeds as follows:
The bitmap image is converted into a discrete distance field
with nine sets of distances ranging from zero pixels (that is,
the point is contained in the shape) to eight or more pix-
els. To compute this distance field, the bitmap is convolved
with a matrix of 15×15 pixels containing a cone. As typical
typefaces are rather thin, this simple process runs adequately
fast: The matrix is only, so to speak, stamped into the bitmap
around the relatively few pixels that are set to “on.”

Then, the software iterates over all “on” pixels of the vir-
tual rotated copy and accumulates the distances of the origi-
nal at the same positions. On first sight, this looks as though
only gaps in the original shape below the rotated shape will
be taken into account. However, protrusions of the original
shape out of the rotated shape contribute as well because
they appear as gaps at the rotated position.

The sum of the distances is divided by the total number
of “on” pixels to provide an average distance. This final nor-
malization ensures equal chances for long words in relation
to short words and for all-capital acronyms in relation to
words that contain only lowercase characters.

4. Editing with guaranteed symmetry

The central part of the solution consists of a vector graphics
editor that produces shapes with enforced point symmetry.
Its input consists of a word typed by the user typeset in a
font selected by the user. The corresponding shape is built
using standard calls of the Windows operating system to re-
trieve the outlines of characters. These are composed of line
segments and quadratic Bézier curves, as this is all that is
required for fonts in the TrueType format. To provide the
standard editing functions with two tangential handles per
Bézier segment, the prototype software, however, converts
them to the more common cubic Bézier curves.

The software offers the standard editing capabilities such
as selecting multiple handles or complete outlines and mov-
ing them using the mouse. Furthermore, the software pro-
duces rotational symmetry. Initially, the center of revolution
is estimated from the bounding box of the total shape. At
all times, the user can nudge this center point with the cursor
keys. To help with this task and other tasks, a subdued image
of the rotated shape is displayed in the background.

To define the symmetrization, the user has to draw a free-
hand polyline from the center point to the rim of the to-
tal shape. This polyline is automatically glued to a rotated

Figure 3: The user draws a freehand polyline to define the
cut (two examples shown). In many cases this leads to mean-
ingful results without any adjustments to the handles of the
contours.

copy of itself to become point-symmetric. All contours are
cut along their intersections—if present—with this polyline.
For the Bézier segments of the contours this requires solving
a cubic equation (including degenerate cases) and splitting
each segment that intersects the polyline. All parts and all
complete contours below the polyline are removed. All parts
and all complete contours above the polyline are copied, ro-
tated and—where necessary—pasted to the contours above
the polyline, see Figure 3.

The possibly pointy connections produced by cutting and
gluing are smoothed, which will be discussed in Section 5.
All of this symmetrization happens in real time while the
user edits the shapes or draws a new polyline to cut the
shapes. Eventually, the result can be stored as an EMF vector
graphics file.

5. Smooth fusion of vector shapes

The input to this step consists of a number of contours com-
posed of lines and cubic Bézier curves, obtained by cutting
and pasting. Where a contour meets the polyline used for
cutting, a hard corner appears. The objective of the final step
to be described now is to replace these corners by smooth
Bézier transitions with adjustable softness, see Figure 4.

The basic idea of the smoothing process is to apply the
following to each line that has been generated from the in-
tersection between the polyline and a contour, see Figure 5:
Starting from that line, move outward along the contour, in
both directions, by an arc length that is specified globally by
the user. Record the two resulting curve points and the speed
vectors at these two places. Insert a Bézier segment that con-
nects these two points. Pick tangent handles for this Bézier
segment that continue in the directions of the derivatives.
Choose the length of the tangent handles so as to optimize
the curvature of the inserted piece. One special case has to

c© The Eurographics Association 2010.

27

J. Loviscach / Finding Approximate Ambigrams and Making them Exact

Figure 4: The hard corners (topmost) produced by simple
cutting and pasting are smoothed to a degree set by the user
(second line to bottom).

Figure 5: The smoothing algorithm walks a given arc length
outward from the intersections with the polyline (left). Then
the points thus found are connected by a curve that picks up
the tangent directions (right).

be handled: Two intersections of the polyline with a contour
may be so close in terms of arc length that the march out-
ward as described before would lead to a collision. In this
case, the new end point is placed on the mid point (in terms
of arc length) on the contour between both intersections.

Choosing the right length of the tangent handles turned
out to be difficult. A constrained minimization of the integral
of the square of the second derivative of the curve produced
overly flat connections. Hence, the software prototype uses
a 1:1 blend of the length obtained by this optimization and
the arc length walked along the contour.

Figure 6: Ambigrams created from some common typefaces.

6. Conclusion and outlook

This paper presented a method to find approximate am-
bigrams and an interactive technique to create point-
symmetric shapes from arbitrary vector graphics, see Fig-
ure 6. In particular the latter technique could have applica-
tions outside of the realm of ambigrams. For instance, one
could provide soft versions of boolean operations in vector
graphics editing software.

The dictionary search could be extended to provide sug-
gestions for ambigram-friendly synonyms: “old” does not
work well, but “antique” would be great. In addition, the sys-
tem could recommend the best font for a word to become an
ambigram. Another generalization could address ambigrams
that appear as different words when rotated by 180 degrees.

References
[Bro03] BROWN D.: Angels & Demons. Atria Books, 2003. 1

[HKR93] HUTTENLOCHER D. P., KLANDERMAN G. A., RUCK-
LIDGE W. J.: Comparing images using the Hausdorff distance.
IEEE Transactions on Pattern Analysis and Machine Intelligence
15, 9 (1993). 3

[Hof85] HOFSTADTER D. R.: Metamagical Themas: Questing
for the Essence of Mind and Pattern. Basic Books, 1985. 1

[Hol09] HOLST D.: The Ambimatic ambigram generator.
http://www.ambigram.com/matic/, last accessed on 2010-
02-23, 2009. 2

[Hun10] HUNTER M.: Glyphusion. http:http://glyphusion.
com/, last accessed on 2010-02-23, 2010. 2

[IMKT97] IGARASHI T., MATSUOKA S., KAWACHIYA S.,
TANAKA H.: Interactive beautification: a technique for rapid ge-
ometric design. In Proc. UIST ’97 (1997), pp. 105–114. 2

[LLM07] LI M., LANGBEIN F. C., MARTIN R. R.: Detecting ap-
proximate incomplete symmetries in discrete point sets. In Proc.
SPM ’07 (2007), pp. 335–340. 2

[MGP06] MITRA N. J., GUIBAS L. J., PAULY M.: Partial and
approximate symmetry detection for 3D geometry. In ACM SIG-
GRAPH 2006 Papers (2006), pp. 560–568. 2

[MGP07] MITRA N. J., GUIBAS L. J., PAULY M.: Symmetriza-
tion. In ACM SIGGRAPH 2007 Papers (2007), p. 63. 2

[RMS97] RYALL K., MARKS J., SHIEBER S.: An interactive
constraint-based system for drawing graphs. In Proc. UIST ’97
(1997), pp. 97–104. 2

c© The Eurographics Association 2010.

28

http://www.ambigram.com/matic/
http:http://glyphusion.com/

