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Abstract
With the recent advances in real-time rendering that were achieved by embracing software rasterization, the interest in alter-
native solutions for other fixed-function pipeline stages rises. In this paper, we revisit a recently presented software approach
for cached tessellation, which compactly encodes and stores triangles in GPU memory. While the proposed technique is both
efficient and versatile, we show that the original encoding is suboptimal and provide an alternative scheme that acts as a drop-in
replacement. As shown in our evaluation, the proposed modifications can yield performance gains of 40% and more.

CCS Concepts
• Computing methodologies → Rendering; Parallel computing methodologies;

1. Introduction and Related Work

The concept of replacing fixed-function stages of the hardware ras-
terization pipeline with purpose-built, software-based solutions re-
cently received increased interest in the computer graphics com-
munity [KKSS18, KSW21]. Among these built-in stages that are
run on the GPU during rendering, hardware tessellation plays a key
role in reducing CPU-GPU memory transfer overhead, since it al-
lows to offload the generation of detailed geometry directly to the
GPU. However, performance drops at high tessellation factors and
the inability to produce more than 64 splits per edge encourage
developers to investigate alternatives [LJL13]. A particularly note-
worthy approach is the adaptive GPU tessellation method presented
by Khoury et al. [KDR19], The authors’ approach aims to exploit
caching of triangles on the GPU between frames, as well as en-
abling a significantly higher tessellation factor per input primitive:
their approach enables a theoretical 231 triangles to be generated
from each input primitive. To reduce the complexity of cache con-
trol, the authors implicitly target applications with slow-changing
environments: Instead of generating the full detail anew in every
frame, tessellated primitives are produced incrementally by split-
ting or merging triangles over multiple frames until a desired pro-
jected edge length is reached. Splits and merges occur according to
longest edge bisection (LEB) of canonic isosceles right triangles in
barycentric space [Dup20]. The results are cached in GPU buffers.

In order for this technique to be viable, generated triangles must
be compressed in order to economize on-chip memory. The au-
thors’ method of storing a tessellated triangle requires only two in-
tegers per primitive: one for the original triangle and a tessellation
key to describe a subtriangle embedded within. The approach is in-
spired by the compact representation for linear quadtrees [Gar82,
DIP18], which was recently ported to the GPU for real-time ren-
dering [BFK∗16]. Specifically, Khoury et al. propose a key lay-
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Figure 1: Original encoding by Khoury et al. [KDR19]. Concatent-
ing the bits for each LEB split into "left" (0) and "right" (1) yields
a triangle’s code. Converting to barycentric coordinates requires
recursively applying the corresponding transformations (M0,M1).

out wherein each bit represents a transformation of barycentric
coordinates. The key is, in turn, decoded by recursively apply-
ing these transformations to obtain barycentric coordinates that
uniquely identify each tessellated subtriangle (see Figure 1). For
a complete description of the original encoding and its application
to cached tessellation, please refer to the original article [KDR19].
The authors continue using this encoding in their recent work on
concurrent binary trees [Dup20, DYDR21]. However, its recursive
nature implies that rendering tessellated subtriangles becomes more
compute-intensive as subdivision increases: a triangle that results
from 31 subdivisions requires 31 sequential matrix-matrix multipli-
cations to decode it for rasterization; a poor fit for GPU hardware.

2. Our Triangle Encoding Scheme

We propose an alternative triangle encoding method to avoid the
recursive decoding procedure described above. Instead of relying
on transformation matrices, we map each tessellated subtriangle to
a unique location and configuration inside a multi-resolution grid,
whose dimensions align with two sides of the triangle. This enables
us to produce each triangle from its encoded form in constant time.
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Figure 2: Transition from an initial, single-cell grid in 2-state (A)
to the same quad in 4-state (B). In 4-state, each triangle requires an
extra bit to store its index in the cell. Note that this is the singular
layout that cells assume in 4-state. In (C), the cell is split into four,
each representing a variation of the initial 2-state. Dotted lines in-
dicate invalid triangles, that fall outside of the original primitive.

2.1. Mapping Tessellation to a Multi-Resolution Grid

In our scheme, each triangle is fully described by its location in
a grid of a given resolution, as well as a configuration for its cur-
rent state. In order to support fine-granular recursive tessellation
as described in [KDR19], we must define two different states that
each triangle can be in: We distinguish 2-state and 4-state. This
nomenclature is motivated as follows: Consider an input triangle
for tessellation. If we perform uniform tessellation down to an ar-
bitrary level L via recursive LEB, the resulting triangles are then
enclosed by the lower-left cells of a regular grid with resolution
2D×2D, where D = ⌊ L

2 ⌋. Depending on L, each cell either contains
two or four triangles. Hence, a triangle’s state is implicitly defined
by the resolution of the grid in which we consider it to be embed-
ded. Given a cell and state, each triangle is uniquely identified by
one out of two/four possible indices, respectively (see Figure 2).

2.2. Basic Encoding Layout

We can efficiently store the required information to identify each
unique tessellated subtriangle by compressing it into the binary rep-
resentation of an unsigned integer. For this to be unambiguous and
efficient, the ratio of x to y grid resolution must be a known power
of two. In the basic case, this ratio is 1:1 (although we will see later
that this choice is not ideal). We can then infer both the grid resolu-
tion and state for a triangle from the position of the most significant
bit (MSB): An even MSB position indicates 2-state, and an odd one
indicates 4-state. After consuming the corresponding state’s trian-
gle index bits (either 1 or 2), the log2 of the grid resolution in x
and y is equal to half the number of the remaining bits, in which
the actual grid cell coordinates (x,y) are stored. Figure 3 outlines
the full composition of the subtriangle key codes in either state. As
in [KDR19], we omit the MSB in examples unless stated otherwise.

While this encoding is adequately compact and unambiguous,
there are two noteworthy implications. First, to perform the conver-
sion from codes to individual numeric variables and back, we need
to use helper functions that take care of (un-)packing the codes.
Second, note that half of the triangles that this encoding scheme
can represent are invalid (see Figure 2). Thus, one bit is wasted
with this basic approach. In Section 2.4, we show how we can rec-
tify this by slightly adapting the conversion helper functions.

(a) 2-state triangle code (b) 4-state triangle code

Figure 3: Components of subtriangle codes in 2-state and 4-state.
Grid resolution (16×16) and state are implicitly given by the MSB.

2.3. Tessellation Rules

We outline the required rules for applying our encoding to tessella-
tion in the context of LEB. In contrast to the scheme in [KDR19],
handling our codes requires more effort for splitting and merging a
given code. However, decoding a tessellated triangle becomes less
expensive. This suggests a strong opportunity for performance im-
provement since the number of split and merged triangles in each
frame only ever represents a subset of the total displayed triangles.

Splitting If a higher-detail level is required, triangles can be split
at the longest edge, yielding two new triangles. Figure 2 illustrates
how triangle indices and perceived grid resolutions change in our
scheme as subtriangles transition between different states. To avoid
flipping artifacts due to changing triangulation between tessellation
levels, our rules implicitly distinguish 2-state cells with / and \
diagonals. While there are two 2-state variants, there is only one 4-
state layout. This setup suffices to ensure that child triangles avoid
T-junctions if they differ by at most one tessellation level [KDR19].

When transitioning from a 2-state to a 4-state by splitting, the
grid resolution and grid cell coordinates remain the same, but the
correct indices of the triangle’s children must still be computed: If
the sum of grid cell coordinates x + y is odd, the indices for the
first|second child triangle are computed from the current index i
as i0|1 = 2i+ 0|1. Otherwise, the indices become i0|1 = i+ 0|2. If
we instead split a triangle in 4-state, we must compute new child
indices as well as new grid cell coordinates. In this case, the two
child indices are directly given by the two bits of the current index.
The children’s x coordinates can then be computed as x0|1 = 2x+
i1|0. For the children’s y coordinates y0|1, we have:

y0 =

{
y if i = 1

y+1 otherwise
, y1 =

{
y+1 if i = 2

y otherwise

Merging To reduce the tessellation degree, two children can be
merged into one triangle. In practice, this requires the ability to
compute the parent key from either child key. Furthermore, we need
a function that will always yield true for only one child to avoid
both children assuming the role of the merged parent.

For merging two 4-state triangles to a 2-state triangle, we iden-
tify the ones that will take the role of the parent by selecting those
with index i = 3 or i = 0. Note that these two always form part of
two separate 2-state triangles on the previous tessellation level. In
this transition, the x and y coordinates remain unchanged. If the sum
of grid cell coordinates x+ y is odd, the parent index is ip = ⌊ i

2⌋,
otherwise ip is given by the lower bit of the child’s index. For merg-
ing from 2-state to 4-state, we must first identify triangles that will
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never map to the same parent. To select these, we consider their y
coordinates: a child assumes the parent’s role if its index and y co-
ordinate are both even/odd. It is easily confirmed in Figure 2 that
no two triangles in 2-state originating from the same parent in the
previous tessellation level will fulfill this criterion. To obtain the
parent’s grid coordinates, we simply divide the children’s coordi-
nates by two. The index of the parent triangle is computed as:

ip =


i if both x and y are even

2+ i if x is odd and y is even
2i if x is even and y is odd

2i+1 if both x and y are odd

Decoding and Displaying For displaying the encoded subtrian-
gles and deciding whether splits/merges are desired for maintain-
ing image quality, the codes must first be translated into geometry
primitives again. In [KDR19], this is achieved by computing the
barycentric coordinates of subtriangles inside the enclosing, untes-
sellated input triangle. The tessellated triangle’s vertices are then
obtained by simple interpolation of those in the top-level triangle.
To produce the barycentric coordinates, the authors must apply the
previously mentioned recursive matrix transformations. In contrast,
once unpacked, the generation of barycentric coordinates with our
encoding is straightforward. We can identify the corners of the grid
cell as combinations of (x,x+ 1) and (y,y+ 1) and convert those
to normalized coordinates by dividing by the grid resolution. In 2-
state, each triangle is formed from three of these points. In 4-state,
we only need to compute the additional center of the grid cell in
barycentric space to generate the coordinates for each triangle.

2.4. Reclaiming the Lost Bit

Although the presented encoding and rules suffice to provide a
drop-in replacement of the original encoding used in [KDR19],
they come with a drawback, namely, the fact that one bit is ef-
fectively wasted. Hence, compared to the original approach, the
number of representable triangles using a single integer is halved.

To rectify this problem, we first observe that the area of an
isosceles right triangle is half of a square with the same side length
a. The same area is also contained in a rectangle with side lengths a
and a

2 . Hence, we can consider each point in the triangle as a non-
continuous mapping from points in a rectangle with the same area.
Doing so would be beneficial since grid coordinates can just as eas-
ily be applied for exhaustive spatial indexing of rectangular areas.
In practice, we can achieve this by introducing special cases that
map particular triangles in the grid to a different location during
splitting, merging, and decoding. We first stipulate that the grids
must now be rectangular, with their vertical resolution being twice
that of their horizontal one (except for the single-cell case). Hence,
x coordinates will require one bit less to store, which immediately
grants us the previously wasted bit. The so-adapted method, includ-
ing special case treatment, is outlined in Figure 4. We start from the
initial, untessellated triangle in a 1× 1 grid; apart from the MSB,
no additional bits for resolution or index are needed. We initiate
the splitting method to make the first split into 0 and 1. Key 1 as-
sumes the role of a bottom triangle in a single-cell 4-state. Hence,
when another recursive split of 1 is performed, its right half would
be the first triangle to require that the horizontal grid resolution is

1110

01

Merge/Decode

Split

Figure 4: After two subdivisions, the protruding lower right trian-
gle 11 and all its children are treated as the upper right section
of a rectangle. The transformation is undone whenever triangles in
this region are decoded or the children of triangle 1 are merged.

increased. We explicitly create its children as 10 and 11. Their full
keys, including the necessary descriptive MSB, are 110 and 111.
With our new scheme based on a x:y resolution ratio of 1:2, the
MSB in (odd) position 3 indicates that both triangles are in 2-state
and the horizontal grid resolution is 1, while the vertical resolution
is 2. Both triangles represent index 1 of different 2-state variants at
different y coordinates, completing the 1×2 rectangular grid.

For merging, the only special treatment required is to always
pick the parent of 11 to be 1. Finally, for decoding and displaying,
the barycentric coordinate computation must be adapted for tessel-
lated triangles that appear to fall outside of the top-level primitive.
This is exactly the case if the sum of the grid cell coordinates and
the unpacked index (divided by two in 4-state) exceeds the vertical
grid resolution. The actual x,y coordinates are obtained by sub-
tracting the unpacked coordinates from the vertical grid resolution,
minus 1. The correct index is obtained by flipping the bits of the un-
packed index. Once this transformation is complete, decoding and
displaying can be performed for these triangles as described above.

3. Evaluation and Discussion

We evaluate our triangle encoding scheme by comparing per-
formance for adaptive tessellation against the work by Khoury
et al. [KDR19]. We measure the run times of both methods in
the authors’ reference framework for heightmap terrain render-
ing [Dup18]. The changes to run it with our approach are minimal
since only the corresponding rule behaviors have to be modified. To
provide a hardware-based baseline, we also consider the recursive
tessellation approach by Lee et al. [LJL13]. Timings were obtained
by measuring the total GPU time in each frame over an animated
camera path, recorded at 1080p on an NVIDIA RTX 2070 Super
GPU. The different approaches were evaluated in two scenes on
fixed camera paths. For the first, we generate the heightfield from
a high-resolution texture with an input geometry of only two tri-
angles arranged in a quad (see Figure 5a) and test desired triangle
edge lengths of 4, 2, and 1 pixel(s). Figure 5b plots the rendering
performance with our encoding scheme and the unaltered version.
For the second scene, we generate the heightfield procedurally with
an expensive noise function (see supplemental video). To ensure
real-time frame rates, we set the desired edge length to 5 pixels.

In both scenes, we find that the hardware-based approach by
Lee et al. is 6–7× slower on average than the software-based ap-
proaches. This is expected since it does not cache its results be-
tween frames. However, even if caching was used, it stands to rea-
son that the storing and loading of massive amounts of explicit tri-
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(a) Rendered test scene with adaptively tessellated terrain
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Figure 5: (a) First test scene for evaluating performance benefits of our encoding scheme. The red line indicates the camera path. Tessellation
levels are selected dynamically in each frame. (b) Measured frame time for rendering the terrain in (a) along the camera path with 2 and 1
pixel(s) desired edge length. Compared to Khoury et al., our constant-time triangle encoding can reduce frame times by more than 40%.

angle data in each frame would limit its performance and applica-
bility. Among the caching-based approaches, our novel encoding
scheme can yield clear performance benefits. In the first scene, our
method yields a small benefit for a desired projected edge length
of 4 pixels (2.01% on average). At an edge length of 2 pixels,
our method is 9.93% faster and for 1 pixel 38.73%. For both ap-
proaches, memory consumption for caching peaked at 234 MiB,
with a desired edge length of 1 pixel. In the second (procedural
heightfield) scene, our method performs 19.05% better on average
for an edge length of 5 pixels. The ability to improve performance
in this scenario with a longer edge length can be explained by the
GPU being bottlenecked by arithmetic workload due to the evalu-
ation of the procedural heightfield. For both approaches, memory
consumption for caching remained below 16 MiB in this scene.

4. Conclusion and Future Work

In this short paper, we presented a modified, compact triangle en-
coding scheme for use in cached tessellation. The original work by
Khoury et al. achieves fast, fully adaptive triangle tessellation in
software. In our work, we have demonstrated how to improve their
proposed triangle encoding scheme to move from recursive logic
to constant run time. A direct comparison in the original authors’
framework has shown that the modified encoding scheme reduces
GPU workload and can raise performance by 40% or more when
the tessellation rate is high. Thus, our proposed solution serves as
a drop-in solution to further increase the effectiveness of their ap-
proach. An implementation is available at https://github.
com/cg-tuwien/tessellation-encoding.

The context in which the original solution by Khoury et al. was
presented is LEB in a 2D space where each triangle forms a unit
triangle. While this is both effective and easy to implement, its ap-
plicability is limited: It provides no explicit method for resolving
T-junctions; triangle subdivision must be governed by simple rules
(e.g., distance to the camera) to ensure that adjacent triangles dif-
fer by at most one subdivision level. Future work is required to
ensure their approach generalizes to different tessellation criteria
while retaining its high performance. We did not compare against
the follow-up work to [KDR19], concurrent binary trees [Dup20]:

there, the recursive behavior is a necessity of tree traversal, hence
using a constant-time decoding would not change its complexity.
However, the authors have stated that they are pursuing a sparse
hybrid approach, which would most likely benefit from our work.
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