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Figure 1: We introduce a novel GPU-friendly parallel algorithm to compute Loop subdivision of production-ready assets in real-time (right).
Our algorithm is based on the observation that the halfedges (arrows in Sd , left) of the mesh under subdivision are invariably refined into
four new ones (corresponding colors in Sd+1, left). N.B.: in Sd (left), we have Hd = 39 halfedges, Vd = 12 vertices and Ed = 24 edges.

Abstract
We observe that a Loop refinement step invariably splits halfedges into four new ones. We leverage this observation to formulate
a breadth-first uniform Loop subdivision algorithm: Our algorithm iterates over halfedges to both generate the refined topo-
logical information and scatter contributions to the refined vertex points. Thanks to this formulation we limit concurrent data
access, enabling straightforward and efficient parallelization on the GPU. We provide an open-source GPU implementation
that runs at state-of-the-art performances and supports production-ready assets, including borders and semi-sharp creases.

CCS Concepts
• Computing methodologies → Computer graphics; Mesh models;

1. Introduction

Loop Subdivision for Interactive Modelling. Loop subdivi-
sion [Loo87] is a ubiquitous primitive supported by most inter-
active modelling tools through the industry-standard OpenSub-
div (OSD) library [Pix13]. The main advantage of OSD is that it
achieves interactive rendering of complex geometry (10M−100M
subdivided vertices) through GPU acceleration. However, these
performances are only achieved under the assumption of static
mesh topology. This naturally prevents interactive modelling ex-
periences, where the user frequently edits mesh topology.

Limitations and Related Solutions. OSD is restricted to fixed
topologies because it converts the input mesh into regular box-
spline patches that can be evaluated in parallel [HFN∗14]. Unfortu-
nately, this takes several seconds to complete even for moderately-
sized meshes (100K−1M vert.) and must be recomputed for each
topology change. Recently, parallelization of the recursive subdivi-
sion rules was achieved for Catmull-Clark subdivision [MWS∗20,

DV21], resulting in real-time performances for dynamic topolo-
gies. Yet, artists may create meshes specifically for Loop subdivi-
sion and these cannot easily be evaluated in real-time. The method
of Mlakar et al. can be extended to Loop subdivision [MWS∗20],
but relies on a dedicated data-structure based on sparse matrices.

Contribution. Instead, we show how to generalize the simpler half-
edge based method of Dupuy and Vanhoey [DV21] to Loop subdi-
vision. We derive an invariant rule in which each halfedge splits
into four new ones following our color-coding of Fig. 1 (arrows,
left). Based on this observation, we provide a compact and com-
plete set of definitions (Sec. 2) and algorithms (Sec. 3) for imple-
menting Loop subdivision with semi-sharp crease support in paral-
lel over halfedges. In Sec. 4, we show that this leads to an efficient
algorithm that runs in real-time (Fig. 1, right) and greatly outper-
forms OSD for dynamic topologies, while still yielding similar per-
formances for static ones. To our knowledge, our implementation is
the first to lift uniform Loop subdivision to the class of subdivision
schemes with real-time modelling performance.
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2. Preliminaries

In this section, we provide the fundamental background to compute
Loop subdivision using halfedges. In Sec. 2.1, we recall the Loop
refinement rules as implemented in OpenSubdiv with support for
semi-sharp creases. In Sec. 2.2, we describe the halfedge mesh data
structure we leverage for our algorithm.

2.1. Loop Refinement

Loop subdivision applies the refinement rules defined by
Loop [Loo87] on an input triangle mesh S0, yielding a denser mesh
S1. Repeating this process D times yields denser triangle meshes
S1, . . . ,SD, converging towards a smooth surface for higher D.

Topological Rules. The topological rule is illustrated in Fig. 1 (left,
in orange): The new triangles of Sd+1 originate from splitting each
triangle of Sd≥0 into four new ones.

Semi-Sharp Creases. Edges of the control mesh S0 can be tagged
with arbitrary sharpness values σ > 0, which alters vertex point
evaluation (see next paragraph). During subdivision, crease sharp-
ness is decremented so that it starts smoothing after a number of
subdivision levels. We introduce the following definitions (illus-
trated in our supplementary “cheat sheet”, Sec. 1.1): A smooth
edge is not a crease, i.e., σ = 0. A sharp crease edge has σ > 1,
and if σ ∈ (0,1), then it is a blending crease edge. Furthermore:
a smooth vertex has zero or one adjacent crease, a crease vertex
has exactly two adjacent creases, and a corner vertex has more
than two adjacent creases. We define the vertex sharpness σ̄ as the
average of the sharpnesses of all its adjacent crease edges. Finally, a
crease vertex having σ̄ ∈ (0,1) is called a blending crease vertex.
Note that we follow Hoppe [HDD∗94] in tagging all border edges
as infinitely sharp creases to allow for boundary edge preservation.

Vertex Point Calculation. All vertices of the new triangle mesh
Sd+1 receive new attributes according to the following (E,V) rules:
(E.1) New creased edge points – the midpoint Q of the old edge,
(E.2) New smooth edge points – the weighted average 1

4 (3Q+R),
(E.3) New blended crease edge points – the linear interpolation of
point rules (E.1) and (E.2) with weight σ ∈ (0,1),
(V.1) New corner vertex points – the old vertex point V ,
(V.2) New crease vertex points – the weighted average 1

4 (3V +S),
(V.3) New smooth vertex points – the average (1−nβn)V +βnn ·T ,
(V.4) New blended vertex points – the linear interpolation of point
rules (V.1) and (V.2) with weight σ̄ ∈ (0,1),
where (illustrations in our supplementary “cheat sheet”, Sec 1.2):

V = the old vertex point,
R = the midpoint of the two vertex points in both incident tri-

angles that are opposite to the edge,
S = the midpoint of the two vertex points that share a crease

edge with V ,
T = the average of the old neighboring vertices adjacent to V ,
n = valence of the old vertex point, and

βn = 1
n

(
5
8 −

(
3
8 +

1
4 cos( 2π

n )
)2

)
is a function of n.

2.2. Halfedge Mesh Data-Structure

In this subsection we describe our memory representation. For
more details, we provide source code as supplemental material.

Halfedge Buffer. To process Loop subdivision on a halfedge mesh,
we require the following operators, as described by Dupuy and
Vanhoey [DV21]: NEXT, PREV, FACE, TWIN, VERT and EDGE.
To this end, we rely on the Directed Edges data structure [CKS98],
which stores the halfedges that form a triangle sequentially in mem-
ory. In practice, we store each halfedge as three 32-bit integers
which, respectively, store the result of the operators TWIN, VERT

and EDGE. Since the halfedges forming a triangle are consecutive
in memory, we retrieve the remaining operators analytically:

NEXT(h) = h mod 3 == 2 ? h−2 : h+1, (1)

PREV(h) = h mod 3 == 0 ? h+2 : h−1, (2)

FACE(h) = bh/3c . (3)

Note that we take care to preserve this halfedge contiguity for Sd>1

when deriving our halfedge refinement formulae in Sec. 3.

Vertex Buffer. We store the vertex points as three 32-bit floating
point values in a vertex buffer. Each halfedge has access to its sup-
porting vertex point through its VERT operator, which works as a
regular index buffer for the vertex buffer.

Crease Buffer. We store creases as a 32-bit floating point sharpness
value and two 32-bit integers. The former returns the result of the
σ operator, while the remaining two return that of the successor
crease NEXT and predecessor crease PREV.

3. Parallel Loop Subdivision

In this section, we present our halfedge-based loop refinement rule
that leads to a parallel implementation. In our formalism, a mesh Sd

is represented by a halfedge bufferHd composed of Hd halfedges, a
vertex buffer Vd of Vd vertices, and a crease buffer Cd of Cd creases.
The input mesh S0 is refined into successive meshes S1, . . . ,SD

by D successive applications of Loop refinement. One refinement
step yields Sd+1 given Sd , and comprises the steps of halfedge
refinement (Hd→Hd+1, Sec. 3.1), crease refinement (Cd→Cd+1,
Sec. 3.2) and vertex refinement (Vd → Vd+1, Sec. 3.3).

3.1. Halfedge Refinement

Loop refinement splits each halfedge of a mesh into four: see the
red, green and blue halfedges in Fig. 1 (left). So we write Hd+1 =
4Hd , and it follows trivially that, at depth d, we have

Hd = 4dH0 (4)

halfedges, where H0 is the number of halfedges of the input mesh
S0. Similarly, we have Fd+1 = 4Fd , and it follows that Fd = 4dF0,
where F0 = H0/3 is the number of faces of the input mesh. Unlike
for Catmull-Clark subdivision [DV21], the four new halfedges do
not form a single face. This thus requires a careful design of the
halfedge numbering at subdivision, which we focus on next.

Refinement Rule. By convention, we choose to split the h-th
halfedge inHd into the four new halfedges inHd+1 indexed by

h 7→ {3h+0,3h+1,3h+2,3Hd +h}.

We arrange the halfedges inHd+1 as follows (see Fig. 1, left): The
new (3h+0)-th halfedge cuts the old halfedge h in half and belongs
to triangle number h, The new (3h+1)-th and (3h+2)-th halfedges
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Algorithm 1 Halfedge refinement
1: procedure REFINEHALFEDGES(Hd : input,Hd+1: output)
2: for all h ∈ [0, Hd) do
3: h′, t, t′← PREV(h),TWIN(h),TWIN(h′)
4: // Twin rules
5: TWIN(Hd+1[3h+0])← 3 NEXT(TWIN(Hd [h]))+2
6: TWIN(Hd+1[3h+1])← 3Hd +h
7: TWIN(Hd+1[3h+2])← 3 TWIN(PREV(Hd [h]))
8: TWIN(Hd+1[3Hd +h])← 3h+1
9: // Edge rules

10: EDGE(Hd+1[3h+0])← 2 EDGE(h)+ (h > t ?0 : 1)
11: EDGE(Hd+1[3h+1])← 2Ed +h
12: EDGE(Hd+1[3h+2])← 2 EDGE(h′)+ (h′ > t′ ?1 : 0)
13: EDGE(Hd+1[3Hd +h])← 2Ed +h
14: // Vert rules
15: VERT(Hd+1[3h+0])← Vert(h)
16: VERT(Hd+1[3h+1])← Vd +EDGE(h)
17: VERT(Hd+1[3h+2])← Vd +EDGE(PREV(h))
18: VERT(Hd+1[3Hd +h])← Vd +EDGE(PREV(h))
19: end for
20: end procedure

follow within the same triangle, The new (3Hd + h)-th halfedge
is the twin of the new (3h+ 1)-th halfedge. This construction pre-
serves halfedge contiguity within faces, as required by Eqn. (1)–(3).
It also induces an analytic formula for the subdivided halfedge’s
TWIN attribute, which we provide in Alg. 1 (lines 5–8).

Edge Operator. Loop subdivision splits existing edges in two, and
adds three new edges per input triangle. It follows that the number
of edges Ed+1 = 2Ed +3Fd , or equivalently using direct evaluation:

Ed = 2dE0 +3(22d−1−2d−1)F0. (5)

By convention, we choose that the e-th edge in Sd splits into two
edges in Sd+1 indexed by e 7→ {2e + 0,2e + 1}, and creates a
new edge (contributing to the central triangle) labelled as 2Ed +h.
This way, each halfedge produces exactly one additional edge (see
Fig. 1: e.g., h0 ∈ Sd in red generates e48 ∈ Sd+1, h1 ∈ Sd in green
generates e49 ∈ Sd+1, h2 ∈ Sd in blue generates e50 ∈ Sd+1). This
construction yields the refinement rules of the halfedge’s EDGE at-
tribute, and we provide it in Alg. 1 (lines 10–13).

Vertex Operator. Loop subdivision adds an extra vertex for each
edge of the input mesh. It follows that the number of vertices
Vd+1 =Vd +Ed , or equivalently:

Vd =V0 +(2d−1)E0 +(22d−1−3 ·2d−1 +1)F0. (6)

By convention, we label the extra vertex produced by the e-th edge
as Vd + e (see Fig. 1: e.g., h0 ∈ Hd – spanning e4 – produces
v16 ∈ Sd+1). This construction yields the refinement rules of the
halfedge’s VERT attribute, also provided in Alg. 1 (lines 15–18).

Halfedge Refinement Algorithm. Our algorithm for halfedge
refinement (see Alg. 1) behaves similarly to Dupuy and Van-
hoey’s [DV21]: a breadth-first (i.e., one depth level at a time) evalu-
ation over halfedges of the halfedge refinement rules. As such, it is
also trivial to parallelize via a parallel-for loop over the halfedges.
We provide a detailed example in Sec. 2 of our supplementary
“cheat sheet”.

Algorithm 2 Vertex point calculation (Smooth points)
1: procedure SMOOTHPOINTS(Sd : input mesh, Vd+1: points)
2: Vd+1← 0 . Initialize vertex buffer
3: for all h ∈ [0, Hd) do
4: v← VERT(h) . halfedge vertexID
5: vn← VERT(NEXT(h)) . neighboring vertexID
6: vp← VERT(PREV(h)) . 3rd vertex in triangle
7: n← VALENCE(Sd , h)
8: ve← Vd +EDGE(h) . new edge point vertexID
9: β← 1

n (
5
8 −

( 3
8 + 1

4 cos( 2π

n )
)2
)

10: Vd+1[ve]←Vd+1[ve]+ 3Vd [v]+Vd [vp]
8

11: Vd+1[v]←Vd+1[v]+ ( 1
n −β)Vd [v]+βVd [vn]

12: end for
13: end procedure

3.2. Crease Refinement

A step of Loop subdivision splits each crease into two new ones
covering the two edges the original one was split into. So we
write Cd+1 = 2Cd , and it follows trivially that, at depth d, we have
Cd = 2dC0 creases, where C0 = E0 is the number of edges of the in-
put mesh. The algorithm for refining the crease buffer is not Loop-
specific: it is identical to that of Dupuy and Vanhoey [DV21] in
which the attributes σ are decremented, and NEXT and PREV are
updated consistently. As such, our implementation is identical too.

3.3. Vertex Point Calculation

There are two types of refined vertex points: the (new) edge points
and the update of the (old) vertex points. We compute both using
a single loop over halfedges where each halfedge scatters its con-
tribution to a single edge-point and a single vertex-point. Since the
calculation depends on the crease configurations (see Sec. 2.1), the
resulting algorithm is quite long. Due to page-length constraints,
we simply provide in Alg. 2 the smooth case (E.2 and V.3) and re-
fer the interested reader to our supplementary source code. Notice
how each halfedge additively scatters its contribution to a single
edge point (line 10) and a single vertex point (line 11) following
E.2 and V.3, respectively. Importantly, we mention that the vertex
buffer Vd+1 must be initialized to zero.

3.4. Implementation Details

Parallelization. We provide a CPU and a GPU implementation.
We parallelize the computation over halfedges using C++ OpenMP
parallel-for loops and GLSL Compute shaders, respectively. Alg. 2
leads to concurrent memory writes in lines 10 and 11. To handle
race conditions, we respectively use an OpenMP atomic and the
NVIDIA GL_NV_shader_atomic_float extension [DV21].

Memory Footprint. Our memory consumption can be simply
evaluated with the following explicit formulae. Computing a sub-
division down to depth D requires storing ∑

D
d=0 Hd = (4D+1 −

1)F0, and ∑
D
d=0 Cd = (2D+1− 1)E0 elements for the halfedge and

crease buffer entries, respectively. As for the vertex buffer, we al-
locate size for ∑

D
d=0 Vd = D ·V0 +(2D+1−D− 2)E0 +( 4D+1−4

6 −
3(2D−1)+D)F0 entries. All three values have to be multiplied by
12 bytes, as each entry of the buffers consists of three 4-byte integer
or floating-point values. Tab. 1 provides some examples of memory
consumption.
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Asset H0 E0 =C0 F0 V0 GiB

Knight 1,902 951 634 365 0.14
BigguyT 8,700 4,350 2,900 1,452 0.63
T-rexT 67,140 33,867 22,380 11,539 4.83
ArmorGuyT 101,736 51,885 33,912 18,423 7.32

Table 1: Memory requirements (GiB) for subdivision depth D = 6.

4. Validation & Results

In this section, we position our method w.r.t. related work and
demonstrate its effectiveness. We run our parallel implementation
on four meshes and provide all data with a more thorough evalua-
tion in our supplemental documents.

4.1. Scalability

In order to evaluate the parallel nature of our algorithm, we con-
ducted the following experiment: We compute SD given S0 using
our algorithm and plot the performances for different numbers of
processors in Fig. 2. As demonstrated by the reported numbers, per-
formances scale proportionally to the number of CPU threads, and
thus naturally benefit from GPU acceleration. We emphasize that
the atomic operations we require per halfedge (Alg. 2, lines 10–11)
have negligible impact on scalability. This is in part due to the fact
that the number of concurrent writes are negligible: there are two
writes for each edge point, and no more than v > 2 for each vertex
point, where v denotes vertex valence.

1 2 3 4 5 6
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subdivision depth

tim
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s)

CPU_1
CPU_2
CPU_4
CPU_8
CPU_16
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GPU

Figure 2: Scalability w.r.t. thread count. End-to-end subdivision
(halfedges, creases and vertex points) on the BigguyT model. Com-
puted on an AMD Ryzen Threadripper 3960X CPU or NVIDIA Ti-
tan Xp GPU.

4.2. Comparison

Positioning. Below, we compare performances with OSD, the only
openly available implementation of fast Loop subdivision. Alter-
natives exist, but are limited. Stam [Sta99] relies on lookup ta-
bles that dismiss semi-sharp creases. Li et al. [LRZM11] trade
quality for efficiency by computing an inexact limit surface.
Mlakar et al. [MWS∗20] propose a valid alternative: similar to our
work, parallel breadth-first subdivision results in state of-the-art
performances. Unfortunately, a fair comparison is impossible as

their method is complex to reproduce correctly and source code is
unavailable. Parallel half-edge refinement was shown to be slightly
slower than their method for Catmull-Clark subdivision [DV21]: it
remains to be seen if this is similar for Loop refinement.

Performance Comparison. We compare to OSD exclusively on
uniform subdivision and consider two scenarios: animation and
modelling. The animation scenario assumes the topology of S0 to
be static, and therefore VD and CD can be precomputed and fixed:
only the vertex buffers Vd>1 are updated at runtime. In contrast, the
modelling scenario requires to recompute all the buffers of Sd≥1,
which includesHd>1, Cd>1 and Vd>1.

As demonstrated by Tab. 2, our method is roughly as efficient as
OSD in the animation scenario. For the modelling scenario how-
ever, we obtain large speedups. This is because OSD relies on
subdivision tables that have to be recomputed at each topology
change [HFN∗14], which is not parallelizable, as observed in pre-
vious works [MWS∗20, DV21]. We emphasize that our implemen-
tation is fast enough for interactive modelling and rendering. Also
note that OSD has a higher memory consumption: it runs out of
memory for subdivision depths that our method handles well, as
shown in our supplemental documents.

Modelling Knight BigguyT T-rexT ArmorGuyT
Ours 0.75ms 3.58ms 25.58ms 38.07ms
OSD 2.51s 13.26s 99.40s 124.91s

Animation
Ours 0.43ms 2.34ms 16.08ms 23.83ms
OSD 0.42ms 2.73ms 17.45ms 13.51ms

Table 2: Time for subdivision down to depth D = 5, computed on
an Intel Core i5 4690K and an NVIDIA Titan Xp.
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