
EUROGRAPHICS 2022/ N. Pelechano and D. Vanderhaeghe Short Paper

Robust Sample Budget Allocation for MIS

László Szirmay-Kalos1 & Mateu Sbert2

1 Budapest University of Technology and Economics, Dept. of Control Eng. and Inf. Tech, Hungary
2 University of Girona, Spain

Abstract
Multiple Importance Sampling (MIS) combines several sampling techniques. Its weighting scheme depends on how many sam-
ples are generated with each particular method. This paper examines the optimal determination of the number of samples
allocated to each of the combined techniques taking into account that this decision can depend only on a relatively small
number of previous samples. The proposed method is demonstrated with the combination of BRDF sampling and Light source
sampling, and we show that due to its robustness, it can outperform the theoretically more accurate approaches.
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1. Introduction and previous work

Multiple Importance Sampling (MIS) [VG95, Vea97] has been
proven efficient in many Monte Carlo rendering algorithms. It is
able to preserve the advantages of the combined techniques and
requires only the calculation of the pdf of all methods when a sam-
ple is generated with one particular method. The weighting scheme
depends on the pdfs of the individual techniques and also on the
number of samples generated with each of them.

This paper proposes a simple adaptive technique to automati-
cally determine the sampling budgets of the combined methods
based on the statistics of previous samples. Although the proposed
method cannot guarantee a theoretical optimum, its advantages are
the simplicity and the robustness, and that it has no additional
hyper-parameters to tune.

MIS has been applied in a number of rendering algorithms, and
its variance is extensively studied [VG95]. Several estimators have
been proposed that are better than balance heuristics with equal
sample budget [SHSK16, HS14, HKD14, SH17, SHSK18]. Lu et
al. [LPG13] proposed an adaptive algorithm for environment map
illumination, using the Taylor series approximation of the variance.
In [EMLB15a, EMLB15b] strategies and analysis were given as-
suming equal number of samples. Sbert et al. [SHSKE18] con-
sidered the cost associated with the sampling strategies, and in
[SHSK19] they obtained the solution by optimizing the variance
using the Newton-Raphson method. In [VHH∗19] the Kullback-
Leibler divergence replaced the variance. The variance of an im-
portance sampling estimator has been shown to be equal to a Chi-
square divergence [CMO08, MIG17, MMR∗19, SE22], which in
turn can be approximated by a Kullback-Leibler divergence up
to the second order [NN14] and with gradients differing only in

a weighting term [MMR∗19]. The optimal sample budget has
also been targeted with neural networks [MMR∗19,MBPG20]. Re-
cently, a theoretical formula has been elaborated for the weighting
functions [KVG∗19]. In [SE22] the balance heuristic estimator was
generalized by decoupling the weights from the sampling rates, and
implicit solutions for the optimal case were given.

These techniques offer lower variance and theoretically outper-
form MIS with equal number of samples when estimating the in-
tegral of the rendering equation. However, equations determining
the optimal weighting and sample budget require the knowledge
of the integrand and typically numerical methods to solve them. In
computer graphics, this integrand is not analytically available, so
previous samples should be used for the approximation, which also
introduces error in the computation. Thus, it is not guaranteed that
a theoretically superior estimator also performs better in practice.
In this paper we focus on simple equations and robust estimations,
and show that they can outperform more involved approaches.

2. The MIS estimator

Suppose we wish to estimate the value of integral I =
∫

f (x)dx and
have m proposal pdfs pi(x) to generate samples in the domain of the
integral. The MIS estimator [VG95] has the following expression:

F =
m

∑
i=1

1
ni

ni

∑
j=1

wi(Xi j)
f (Xi j)

pi(Xi j)
, (1)

where the weights wi satisfy normalization: ∑
m
i=1 wi(x) = 1.

In this combination scheme, sampling method i uses probability
density function pi(x) to generate ni number of random samples
Xi j, ( j = 1, . . . ,ni). The total number of samples is ∑

m
i=1 ni = N.

Integral estimator F is unbiased, as its expected value is equal to
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integral I:

E[F ] =
m

∑
i=1

1
ni

ni

∑
j=1

∫
wi(x) f (x)

pi(x)
pi(x)dx =

∫
f (x)dx. (2)

To express the variance of the estimator, let us define Fi j as

Fi j = wi(Xi j)
f (Xi j)

pi(Xi j)
. (3)

For a fixed method i, the estimators Fi j are independent and identi-
cally distributed random variables with expected value µi:

µi = Epi [Fi j] =
∫

wi(x) f (x)
pi(x)

pi(x)dx =
∫

wi(x) f (x)dx. (4)

The variance of Fi j is

σ
2
i = E[F2

i j]−E2[Fi j] =
∫

w2
i (x) f 2(x)

pi(x)
dx−µ2

i . (5)

2.1. Balance heuristics

The variance of the estimator depends on the combination weights
wi(x), so we find them minimizing the variance. One step into this
direction is to heuristically propose the algebraic form of the weight
functions. Balance heuristic states that the weight of method i at
domain point x should be proportional to the density of samples
generated by method i in this point:

wi(x) =
αi pi(x)
p(α,x)

(6)

where αi = ni/N is the fraction of the samples allocated to method
i, and p(α,x) is the mixture density:

p(α,x) =
m

∑
k=1

αk pk(x).

Substituting this weighting function into the MIS estimator formu-
las, we obtain the balance heuristics estimator:

F =
1
N

m

∑
i=1

ni

∑
j=1

f (Xi, j)

p(α,Xi, j)
. (7)

The variance of the balance heuristics estimator is

V [F ] =
1
N

m

∑
i=1

(∫
αi pi(x) f 2(x)

p2(α,x)
dx− µ2

i
αi

)
=

1
N

m

∑
i=1

σ
2
i

αi
(8)

where σ
2
i and µi are also functions of fractions α1, . . . ,αm.

Having fixed the algebraic form of the weight function, the task
is to find the close to optimal fractions αi. The variance of the es-
timator depends on the allocation of samples to different methods,
αi, in a complicated way. If the integrals of µi and the variances
σ

2
i could be easily computed as functions of αi, then this would

be a vector valued optimization process with the constraint that
the sum of samples must be equal to the total sample budget, i.e.
∑

m
k=1 αk = 1. However, there are a few additional issues that need

to be considered:

• The integrals cannot be computed analytically, but must be esti-
mated from the available samples. This uncertainty may signifi-
cantly affect the goodness of the final sample numbers.

• The optimization process should be fast, free from hyper-
parameters, and should not introduce too high overhead.

Unfortunately, the direct optimization for the variance does not
meet these requirements. We need heuristics that may not guarantee
the lowest variance but lead to simple and robust estimation.

3. The heuristics for the weights

To optimize the variance in Eq. 8 under the constraint that the sum
∑k αk of weights must be equal to 1, the following derivatives must
be made equal to zero according to Lagrange multipliers:

∂

∂αk

(
V [F ]−λ

(
1−

m

∑
i=1

αi

))
= 0, (9)

which leads to the following equations for k = 1, . . . ,m [SE22]:

σ
2
k

α2
k
+2

µ2
k

α2
k
−2

m

∑
i=1

µi

∫
pi(x)pk(x) f (x)

p2(α,x)
dx = λ. (10)

Thus, the expression on the left hand side is the same for different
k = 1, . . . ,m indices. Our heuristic is that here the dominant term is
µ2

k/α
2
k and the other terms do not significantly modify the selection

of αk parameters. This heuristic leads to the requirement that

µk
αk

=
∫

pk(x) f (x)
p(α,x)

dx = Epk

[
f (X)

p(α,X)

]
(11)

should be constant. If the mixture density is fair enough, then
p(α,X) is approximately proportional to integrand f (X), thus their
ratio is constant everywhere. The average of these roughly constant
ratios has only a small fluctuation no matter what density is used to
draw the samples.

4. Combination of light source sampling and BRDF sampling

In order to demonstrate the proposed scheme, we consider the com-
bination of light source sampling and BRDF sampling using prob-
ability densities p1(X) and p2(X), respectively. The mixture of the
two original proposal pdfs is:

p(α,x) = αp1(x)+(1−α)p2(x). (12)

The primary MIS estimator is:

F =
f (X)

p(X)
=

f (X)

p(α,X)
. (13)

Equivalently, the weighting scheme is

w1(X) =
αp1(X)

p(α,X)
, w2(X) =

(1−α)p2(X)

p(α,X)
.

Finally, the µi/αi terms are

µ1(α)

α
= Ep

[
f (X)p1(X)

p2(α,X)

]
,

µ2(α)

1−α
= Ep

[
f (X)p2(X)

p2(α,X)

]
.

According to our heuristics, the optimal α can be obtained by solv-
ing the following equation:

C(α) =
µ1(α)

α
− µ2(α)

1−α
= Ep

[
f (X)(p1(X)− p2(X))

p2(α,X)

]
= 0. (14)
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Note that this is similar to the gradient of the method aiming at min-
imizing the Kullbach-Leibler divergence [VHH∗19], which termi-
nates when the gradient is zero, i.e. when this equation is solved.
It means that our heuristics is as justified as the variance can be re-
placed by the Kullbach-Leibler divergence in optimum budget allo-
cation. However, the two methods have different iteration schemes
and convergence speeds. We use the Newton-Raphson method for
the numerical solution, when we also need the derivative:

dC
dα

=−2Ep

[
f (X)(p1(X)− p2(X))2

p3(α,X)

]
.

Expectation values are estimated from previous samples gener-
ated with mixture density p(x).

5. Results

In order to test the proposed method, we render the classic scene
of Veach with combined light source and BRDF sampling. The
shiny rectangles have streched-Phong BRDF [NNSK99] with shini-
ness parameters 500, 1000, 5000, and 10000, respectively. The four
spherical light sources emit the same power.

We allocated 100 samples per pixel organized in 10 batches.
The process starts with 5 BRDF and 5 light source samples per
pixel, and the per-pixel α weights are updated at the end of each
batch. Figures 2 and 1 show the rendered images together with the
obtained α maps. In addition to the original sampling techniques
and equal count MIS, we also compared the proposed approach
to [SHSK19], [LPG13], and to the replacement of the variance by
the Kullbach-Leibler divergence as proposed in [VHH∗19]. Fig-
ure 3 depicts the RMSE values obtained as averages of 30 rendering
runs.

Figure 1: Equal sample count MIS rendering with 100 rays per
pixel used as a baseline. The average RMSE is 318.

6. Conclusions

In this paper we investigated the problem of determining the sam-
ple budgets for techniques combined by Multiple Importance Sam-
pling, with a special focus on the simplicity and robustness. The
proposed method calculates the weighting factors of two combined
techniques iteratively in parallel with sample generation. We have
shown that such adaptation can outperform methods directly aim-
ing at the optimization of the variance because the total error con-
tribution of both the variance and the unreliability of the optimal
parameter estimation is reduced in our case.
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Figure 3: RMSE as functions of the number of samples per pixel.
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BRDF sampling (RMSE = 469, Rel.eff. = 0.45) Light source sampling (RMSE = 685, Rel.eff. = 0.22)

Sbert et al. [SHSK19] (RMSE = 297, Rel.eff. = 1.15) Lu et al. [LPG13] (RMSE = 304, Rel.eff. = 1.09)

Müller et al. [VHH∗19] (RMSE = 300, Rel.eff. = 1.13) The new method (RMSE = 293, Rel.eff. = 1.18)

Figure 2: Comparison of MIS weighting schemes. The left part is the image rendered with 100 rays per pixel, the right part is weight α of
the light source sampling. The RMSE and relative efficiency with respect to the equal sample count MIS are computed as the average of 30
independent executions. The relative efficiency is the square of the ratio of equal sample count MIS RMSE and the method’s RMSE. The [0,1]
interval of possible α values is visualized by the color bar.
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