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Abstract

Point sets are a widely used spatial data structure in computational and observational domains, e.g. in physics particle simu-
lations, computer graphics or remote sensing. Algorithms typically operate in local neighborhoods of point sets, for computing
physical states, surface reconstructions, etc. We present a visualization technique based on multi-scale geometric features of
such point clouds. We explore properties of different choices on the underlying weighted co-variance neighborhood descriptor,
illustrated on different point set geometries and for varying noise levels. The impact of different weighting functions and tensor
centroids, as well as point set features and noise levels becomes visible in the rotation-invariant feature images. We compare to
a curvature based scale space visualization method and, finally, show how features in real-world LiDAR data can be inspected
by images created with our approach in an interactive tool. In contrast to the curvature based approach, with our method line
structures are highlighted over growing scales, with clear border regions to planar or spherical geometric structures.

CCS Concepts

o Human-centered computing — Visual analytics; ® Computing methodologies — Point-based models;

1. Introduction

Point sets are commonly employed as a geometrical data structure,
generated e.g. based on sensor or simulation data. Another use is in
the context of object classification or object synthesis; there, point
sets enhance labelled images and/or object models [MGY*19]. In
any case, local neighborhood information is an essential compo-
nent in many point based algorithms; and even more so when in-
cluding point set hierarchies. Similar to the latter, multi-scale views
can be employed, for instance in tensor based algorithms dealing
with geometry processing on surfaces; e.g. to close holes or to de-
noise meshes [LCZ* 18, WLP*17]. Related to this, we also employ
a multi-scale view on local neighborhoods providing a geometric
classification. Specifically, we are interested in reconstruction of
line structures from noisy points clouds, and in the selection of op-
timal neighborhood sizes for this. Our introduced feature images
allow to evaluate for optimal bandwidths and to visualize the effect
of parameter choices in the underlying co-variance analysis.

Our contributions in short are:

e Multi-scale feature images based on a weighted co-variance
measure to visualize linear, planar, and spherical structures.

e Visual analysis of different point set properties; such as shape
and noise. Especially, the linearity measure was used for an op-
timal bandwidth selection with the related Eigenvector.

e Investigation of different weighting functions and centroids em-
ployed in the co-variance, optimized for visualization.
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e Integration into an intuitive visual analysis tool.

Related to our work, Mellado et al. [MGB*12] introduced a con-
tinuous, multi-scale space based parameter derived from geometric
properties of a fitted sphere on a cloud’s points. The parameters
relate to an algebraic fit, and include curvature, a distance, and
the sum of distances (fitness). They show a similar visualization
of the scale space which includes positive and negative curvature.
For this, they require normal vectors at the points. Further, they
provide a scale space image based on co-variance, as introduced
by Pauly et al. [PKGO3]. They utilize this visualization to repre-
sent curvature, which has a similar appearance as our visualization.
They continued their research in the direction of surface reconstruc-
tion, and employ the curvature scale space for point segmentation
and developed an interactive tool for geometric surface classifica-
tion [LMBM20].

Further, Amirkhanov et al. [AHK*13] use a similar visualiza-
tion technique to reveal surface probabilities of a material interface,
over multiple scales at selected edges. Their selection relates to
the line probes presented here. They enable to inspect ground truth
shapes w.r.t. the scanned surface. Three graphs are provided for vi-
sual inspection, denoting straightness, flatness, and circularity. In
contrast, in our method no reference geometry is required; and the
line probe is not directly included in the geometrical analysis, but
rather defines a region of interest. Their three measures relate to
the shape factors, but are shown independently. While this reveals

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org



https://orcid.org/0000-0003-4495-4546
https://orcid.org/0000-0002-0794-0359
https://orcid.org/0000-0001-7564-6234
https://doi.org/10.2312/egs.20211024

62 M. Ritter & D. Schniffner & M. Harders / Visual Analysis of Point Cloud Neighborhoods via Multi-Scale Geometric Measures

related details, our measures provide a quicker overview. Further,
our work is tailored to point clouds in contrast to their voxel based
surfaces.

Regarding our geometric measures we follow Westin et
al. [WPG™*97], who employed tensor shape analysis for fiber track-
ing in the human brain. Natale et al. [NBT10] applied the same
shape factors on point clouds, which they obtained from time-of-
flight images. They introduced a decision network based on multi-
scale shape values at different scales. The latter permitted them to
classify a point as being part of a planar, edge/linear structure or as
noise. We also built upon this multi-scale idea and developed a vi-
sualization technique to reveal properties of the tensor computation
as well as the point cloud neighborhoods, via color-mapped im-
ages. In the tensor computation we employ radial distance weight-
ing functions, which we also analyze visually. For these, several
different choices are possible; for instance, SPH smoothing kernels
or compactly supported radial distance functions and their recent
optimizations, e.g. [CS20].

2. Geometric Analysis via Local Shape Measures

Shape factors: Local geometric measures are computed via a
weighted co-variance analysis. The tensor’s eigenvalues yield three
shape factors: linearity, planarity, and sphericity [WPG*97]:
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with ¢ the second order tensor, ¢ a point of reference (i.e. the cen-
troid), p; the neighbors, ®(.) a distance weighting function, and
r a radius of the local neighborhood of interest. The three shape-
factors Cr, Cp, and Cy are computed from the eigenvalues A; of 7;
with L = Ay +A; +A,. They span a barycentric coordinate system;
thus, three colors can be assigned and interpolated: e.g. bright gray
(linearity), dark blue (planarity), and medium green (sphericity).

Multi-scale view: Eq. (1) initially relies on a specific fixed neigh-
borhood radius which can be difficult to specify for an arbitrary
point cloud. Instead, we propose to change this radius over multi-
ple scales. The step size is automatically chosen based on a min-
imum distance statistic of the points cloud (the median radius of
all neighborhoods comprising of at least 6 neighbors). The growth
can be terminated e.g. dependent on the difference to the features
of the previous scale. If it becomes small for all points, the itera-
tion is stopped early. Figure 1 illustrates how the three shape fac-
tors change, as functions of the radius. The graphs were determined
for a specific centroid, in a point set representing a square. As can
be seen, the linearity graph decreases, when the radius grows to
include the corner; at this point, planarity starts to increase. For
a more compact representation, the three scalar graphs (and base
colors) can be merged into mixed colors, which is indicated by
a color-bar in the bottom of the figure. Such color-bars are com-
puted for a specific location and represent the change of the shape
factors with changing radii. Differences in these color-bars will re-
sult, dependent on point cloud location. These bars are assembled
next to each other for neighboring points of a point set. Figure 2
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Figure 1: Geometric measures (right) computed for a centroid lo-
cation in an example point cloud of a square (left). Resulting ge-
ometric measures depend on the selected radius; linearity in the
example is initially high and decreases when a corner is reached.
The color bar (right, bottom) indicates the barycentric mixing of
the three base colors (in the 2D example only blue and light-gray).

shows an example of such a visualization, for the point cloud of
a square. Note that the abscissa denotes the (ordered) point index,
while the ordinate represents the increasing radius. The corners in
the square are dominant with respect to planarity (blue); the edges
are dominant with respect to linearity (light-gray). Thus, the assem-
bled color-bars provide insight into the dominant shape features at
various scales. We denote these images as multi-scale feature im-
ages (MSFIs). Note that in arbitrary point clouds, points are not
necessarily ordered (as for the artificial square example). Still, an
ordering could be achieved. e.g. by sorting locally along the major
eigenvector of a selected point of reference. Another option could
be sorting along a path provided by a user (see below).

Radius

Point Index

Figure 2: This multi-scale feature image (MSFI) illustrates the ge-
ometric measures by mixing the base colors; pixel columns (ver-
tically) denote a single measure graph at a specific location, for
varying radii. The red line marks the geometric measures for the
point on the square in Figure 1.

3. Analysis of the Visualization Method

In this section we first provide an investigation of the proposed vi-
sualization approach on simple 2D and 3D geometries. We also
present a visual analysis of the influence of weighting functions
and chosen centroids for the tensor computation.

Test geometries: For simplicity, we visualize the multi-scale fea-
tures of four 2D and two 3D sampled point clouds. Figure 3 shows
the resulting, rotation-invariant MSFIs. Various geometric proper-
ties can be seen, e.g. corners (planar/spherical peaks), straight lines
(bright areas), and curvature in and out of a plane (fading from
light-gray). Three of the geometries will be used for further discus-
sion and analysis below: rectangle (a), helix (b), 3D crossing (c).

Influence of tensor weighting: The weighting function ®(.) in
Eq. (1) influences the eigenvalue computation and thus the three
measure graphs. As a result, the location of extrema in the graphs
may change, as well as the graph shape. During our development,
we investigated 30 different options for the weighting functions,
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Figure 3: Geometric measures illustrated via MSF1Is, of four 2D
and two 3D point clouds of curves. Respective geometries are indi-
cated on the left of the measure image. Geometric properties, such

as corners, lines passing close-by, curvature, as well as 2D & 3D
distribution become visible in the images.

C

and also explored the effect on the visualization. Figure 4 illus-
trates the outcome of different choices of ®(.) on the linearity
graph. Three weighting functions are examined: no weighting ®,
a quadratic weighting ®,, and a Fermi-Dirac distribution weight-
ing ®fFp. In general, in combination with different centroids (see
discussion below) a smoother weighting graph results in cleaner
MSFIs. Nevertheless, having extrema located at smaller radii is
preferable, since this saves computational cost in the neighborhood
search. The MSFIs illustrated in this work all employ the Fermi-
Dirac weighting, which showed the best performance related to line
reconstructions in noisy point clouds.
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Figure 4: Influence of weighting functions on the multi-scale fea-
tures, for jitter-noise data. Three of thirty functions are highlighted
showing different minima locations and smoothness in linearity.

Centroid selection: Another choice in Eq. (1) is the centroid c. One
could select an existing point of the point cloud, yielding the point
distribution tensor (PDT); or compute a mean point (mean), yield-
ing a standard co-variance matrix for principal component analy-
sis; or select a geometric median instead (median). For the latter
two, a new centroid has to be computed at each radius scale. The
influence of these different choices also becomes apparent in the
MSFIs; for instance, for the mentioned three test cases, now with
added noise (see Figure 5). The mean and median result in more
prominent shape regions, with clearer borders.

Influence of noise: Any noise present in a point cloud can also
be scrutinized in the MSFIs (as shown in Figure 5). In the de-
picted example, perturbation noise with an amplitude of about 0.28
was added to the geometries (diameters of about 10.0), as well as
10% outliers within their bounding boxes. Examining the MSFIs,
a horizontal green band results at a radius matching the amplitude
(i.e. point distortion distance) of the added noise. Further, using the
mean or geometric median as the centroid leads to better compensa-
tion of noise. Next, dependent on the light-gray regions reasonable
bandwidths for line structures can be determined. Finally, as can
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Figure 5: Effect of different centroids on visualizing noisy point
neighborhoods on the geometries (a), (b), and (c) of Figure 3. Data
was distorted by adding a random displacement. Mean and median
centroids compensate for noise in the geometric measures.

be seen, dependent on the geometry, the optimal radius may vary;
e.g. close to corners small radii are preferable, while in noisy data
larger radii compensate noise.

4. Comparison and Application

Comparison: Using the framework of Mellado et al. [MLGB20,
MGB™12] we generated the different scale space visualizations
for comparison, compiled in Figure 6. Our visualization shows the
shape factors, while theirs is based on curvature. Note that for the
latter the required normal vectors were computed in our framework;
by analyzing, selecting, and finally orienting the medium eigenvec-
tor. The three geometries (a), (b), and (c) are compared; for the first
two, with and without noise. Both methods show straight lines as
gray or white regions, i.e. linearity for our and zero curvature for
their method (nevertheless, note that zero curvature would also re-
sult for a plane). As example, similar appearance can be seen for
the rectangle (a) at the linearity scales (i.e. white for zero curva-
ture). Next, the noise amplitude can in general also be detected in
both; however, our measures distinguish better between 2D and 3D
noise (green/blue coloring). In addition, the region boundaries are
visually stronger, areas more homogeneous, and noise is better fil-
tered. For the helix (b), the higher curvature region (darker red)
can be matched with the linear one in our images. However, cur-
vature differences become less apparent with added noise (right).
Thus, the selection of a prominent linearity radius would become
difficult using their visualization only. In our method smaller radii
in the brighter band would be favored, whereas this is not visi-
ble in the lower radii band in their method. The 3D crossing (c)
shows positive (red) and negative curvature (blue) at the curved
lines. Our method classifies this region “just” as linear. Finally, in
their method it is not straightforward to identify and segment the
same regions, as borders are less prominent (left).

Application example: We have integrated the proposed visualiza-
tion technique into an interactive framework for analysis of real-
world point cloud data, captured by laser scanning. A central in-
teraction element is a tool to allow users to define line probes.
These are manually placed, polygonal lines, along which the ge-
ometric measures can be computed and visualized as MSFIs. Fig-
ure 7 showcases an example data set, comprising a house, a tree,
and several cables. In the depictions (at the top), individual points
in the cloud are colored according to the most prominent shape
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Figure 6: Images generated for rectangle (a), helix (b), and cross-
ing 3D (c), based on our method as well as multi scale curvature
using Mellado et al. [MGB* 12]. Images are shown as pairs — ours
above, theirs below, respectively. With out method 2D and 3D noise
at small radii becomes distinguishable ((a); center/right). Further,
linear regions are highlighted clearer ((b) and (c); left). Also, a
band of smaller radii is highlighted in our images, but not visible
according to curvature ((b); right). Finally, geometric classification
is not clear based on curvature alone.

factor of the multi-scale measures. Two line probes were placed by
a user into the cloud, and the corresponding multi-scale measures
were computed and MSFIs generated along these. Different local
features become apparent in the latter; (1) probe diagonally across
the roof: planarity is prominent. Sphericity increases close to the
gable (left); (2) a probe located on the top one of a bundle of ca-
bles, to the right of the house: linearity is dominant at two scales;
firstly, at a very small scale for the single cable and secondly, for
the bundle of cables.

Figure 7: (Top:) Two line probes placed in real-world data. (1) on
a roof, (2) along a cable bundle. (Bottom:) geometric multi-scale
measures along the probes (left to right). Both exhibit low curva-
ture, but yield different geometric classifications in the MSFIs.

5. Conclusion

We have proposed a visualization paradigm to illustrate and analyze
local geometric features in point cloud neighborhoods. Features
such a geometric shape, indicating curvature or edges, and pres-
ence of noise become apparent in colored multi-scale feature im-
ages. Further, we examined the influence of radial weighting func-
tions and the choice of a centroid on the geometric measures. The
illustrations were utilized during development of a line reconstruc-
tion algorithm, but may support other scale space based method de-
velopments. We compared to a curvature based scale space, which
showed different properties related to geometric classification and
contrast of regions in the images. As a further advantage, our ap-
proach also does not require normals. We presented the utilization
in an analysis tool for light detection and ranging sensor data. In the
future, we will improve the performance of the point cloud shape
measures by GPU computing to maintain interactivity for large
data. Also, we will explore geometric classification for clustering
via the measures, to enhance the visualization. Finally, we will ana-
lyze a combination of the method of Mellado et al. [MGB*12] and
ours, leveraging their advantages.
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