
EUROGRAPHICS 2021/ H. Theisel and M. Wimmer Short Paper

Tight Normal Cone Merging for Efficient Collision Detection of
Thin Deformable Objects

Dong-Hoon Han, Chang-Jin Lee, Sangbin Lee, and Hyeong-Seok Ko

Seoul National University, Korea

Abstract
When simulating thin deformable objects such as clothes, collision detection alone takes a lot of computation. One way of
reducing the computation is culling false-positives as much as possible. In the context of bounding volume hierarchy, Provot
proposed a culling method that is based on hierarchical merging of normal enclosing cones. In this work, we investigate Provot’s
merging algorithm and show that there is some room for improvement. We propose a new merging algorithm, in the context of
discrete collision detection, which always produces an equal or tighter mergence than Provot’s merging. We extend the above
algorithm so that it can be used in the context of continuous collision detection. Experiments show that the proposed method
makes about 25% reduction in the number of triangle pairs for which vertex-triangle or edge-edge collision test has to be
performed, and 18% reduction in time for collision detection.

CCS Concepts
• Computing methodologies → Collision detection;

1. Introduction

When simulating the movement of clothing represented with tri-
angular meshes, handling collisions occurring between cloth sur-
faces is an important problem. It calls for the checking of trian-
gle pair collisions (triangle pair test), which eventually calls for
finding the root of the cubic equations which are derived from the
vertex-triangle and edge-edge coplanarity. Since each triangle pair
test takes a non-negligible amount of computation, several meth-
ods for culling unnecessary checks (i.e., false-positives) have been
proposed. This paper attempts an improvement to existing methods
in false-positives culling.

In normal situations, the collar does not collide with the pants
or legs. Culling of that kind can be achieved by employing the
bounding volume hierarchy (BVH) [Hub93, KHM∗98, Ber97]. On
the other hand, within the same piece of cloth, Volino and Thal-
mann [VT94] pointed out that, if the triangle normals point in sim-
ilar directions, there cannot occur self-collisions. More systemat-
ically, Provot [Pro97] proposed the use of the normal cone hier-
archy (NCH) such that, if all the triangle normals of the sub-tree
can be contained within a half side of the unit sphere, we can
conclude there is no self-collision. The above was to cull false-
positives at an arbitrary instant, i.e., in the context of discrete colli-
sion detection (DCD). Since most simulators adopt continuous col-
lision detection (CCD), Tang et al. [TCYM09] extended the above
to cull false-positives over the simulation time step duration ∆t.
Wang et al. [WLT∗17] shortened the time taken for the contour
test of [VT94] by employing an unprojected normal cone. Heo et
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Figure 1: Figures for defining notations/terminologies. (a) B(a,θ),
(b) S = {N1, . . . ,N5}, (c) C (S).

al. [HSK∗10] proposed a dual cone method that replaced the con-
tour test by using a binormal cone in addition to the normal cone,
and Wang et al. [WTWT18] improved the dual cone method to
cover unhandled cases.

[VT94, Pro97, TCYM09] have been used as the industry stan-
dard over a decade. Although those methods have been culling a
significant amount of false-positives, through this work, we find
that there is still some room for improvement in culling binary tree-
based BVH. We will show that, by applying simple modifications
to the existing methods, more false-positives can be culled.

2. Preliminary

2.1. Notations and Terminologies

We will use the capital letters N,T to refer to a unit normal, tri-
angle, respectively. In the context of CCD, although time t ranges
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Figure 2: Results of merging two cones can vary depending on the
employed merging algorithm. (a) By MProvot when θ1 ≈ θ2, (b) By
MProvot when θ1� θ2, (c) By MProposed

[t, t +∆t] during a time step, we will notate it as t ranges the interval
[0,1]. N(t) means the normal of triangle T at time t.

As shown in Figure 1 (a), we will use B to denote a normal cone
subtended in the unit sphere whose apex is at the origin. We will
use the notation B(a,θ) to refer the normal cone whose axis is unit
vector a and spread angle from the axis is θ. The degenerate case
when θ = 0 will be called a skinny cone.

We will define two operations related to normal cones: merg-
ing M and cone-enclosing C . M (B1,B2) means the construction
of a new cone that encloses the given two cones B1 and B2 as
shown in Figure 2. We may use subscripts such as MProvot(B1,B2)
and MProposed(B1,B2) to denote whose merging algorithm is used.
When a set of unit normals S = {N1,N2, . . .} are given (Figure 1
(b)), the cone-enclosing C (S) denotes the construction of a cone
that encloses all the elements of S as demonstrated in Figure 1 (c).

2.2. Normal Cone Hierarchy Construction

For each leaf node of the NCH, we take the skinny cone in the DCD
context but the non-skinny cone in the CCD context [TCYM09].
Then, for each non-leaf node of NCH, we take the mergence
M (BL,BR) as its normal cone, where BL and BR are the normal
cones of its left and right children, respectively. This merging is
continued bottom-up until arriving at the root node.

3. Compact Geometrical Merging of Two Normal Cones

3.1. Previous Merging Algorithm

Let’s suppose that two cones B1(a1,θ1) and B2(a2,θ2) need to be
merged. Provot [Pro97] proposed the merging algorithm

MProvot(B1(a1,θ1),B2(a2,θ2)) = B(aProvot ,θProvot), (1)

where

aProvot = unitize(a1 +a2) (2)

θProvot =
1
2

cos−1 (a1 ·a2)+max (θ1,θ2) . (3)

The above merging constructs a new cone B that does enclose the
given two cones. However, as exemplified in Figure 2 (b), the resul-
tant cone may not be as tight as one may expect. In this section, as
demonstrated in Figure 2 (c), we propose a new merging algorithm
that guarantees tight mergence in any case.

The above two cones B1 and B2 (if their axes are brought to the
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Figure 3: Cross-sectional drawing of two cones. (a) non-inclusive,
(b) B1 includes B2, (c) B2 includes B1. Red and blue arches show
the results of MProvot and MProposed , respectively.

origin) will intersect the unit sphere, which will produce two cir-
cles Ω1 and Ω2, respectively, in 3D. Then, the problem of finding
the mergence of the two cones is reduced to finding a circle Ω on
the surface of the unit sphere that encloses Ω1 and Ω2. By restrict-
ing the above to the plane formed by the origin and the centers
of Ω1 and Ω2, the problem can be converted to a cross-sectional
2D problem. Referring to the cross-sectional diagram Figure 3, let
the angular spans (φ11,φ12) and (φ21,φ22) represent the cones
B1(a1,θ1) and B2(a2,θ2), respectively, with φ11 < φ12, φ21 < φ22,
and φ11 + φ12 ≤ φ21 + φ22, where all of φ11, φ12, φ21, and φ22 are
within the range [−π,π). Then, Provot’s merging is reduced to

αProvot =
1
4
(φ11 +φ12 +φ21 +φ22), (4)

β =
1
2
(φ21 +φ22−φ11−φ12), (5)

θProvot =
1
2

β+max
(

φ12−φ11
2

,
φ22−φ21

2

)
(6)

where α denotes the cone axis direction in the cross-section.

3.2. Proposed Merging Algorithm

The new merging algorithm we propose in this paper is stated as

αProposed =
1
2
{max(φ22,φ12)+min(φ21,φ11)}, (7)

θProposed =
1
2
{max(φ22,φ12)−min(φ21,φ11)}. (8)

The resultant span (αProposed−θProposed ,αProposed +θProposed) in-
cludes (φ11,φ12) and (φ21,φ22). We prove that the proposed merg-
ing algorithm MProposed always produces an equal or tighter resul-
tant cone than MProvot .

Theorem 1 In the above, θProvot ≥ θProposed .

Proof Let D = θProvot −θProposed . Referring to Figure 3, if φ22 ≤
φ12, B2 is included in B1, and if φ22 > φ12 and φ11 ≥ φ21, B1 is
included in B2. We will call above two cases as inclusive cases.
Then,

D =


1
4{(φ21 +φ22)− (φ11 +φ12)} when inclusive,

1
4{−(φ12−φ11)− (φ22−φ21)

+2max(φ12−φ11,φ22−φ21)}
otherwise,

(9)

both of which are non-negative.

The above implies that D will be large (1) when the two axes a1
and a2 are distant for the inclusive case, and (2) when two angular
spreads θ1 and θ2 are very different for the non-inclusive case.
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3.3. Extension to CCD

In merging cones in the CCD context, Tang et al. [TCYM09] ad-
dressed the issue of how to accommodate time-varying triangle nor-
mals at the leaf nodes to the NCH. They found that the normal N(t)
for all t ∈ [0,1] comes within the cone that encloses

H = {N(0),unitize(N(0)+N(1)−δ),N(1)}, (10)

where δ = (vb−va)× (vc−va) and va, vb, vc are the displace-
ments of three vertices of the triangle. They obtained the cone en-
closing using MProvot , i.e.,

CTang(H) = MProvot(MProvot(B1(N(0),0),B2(N(1),0)),

B3(unitize(N(0)+N(1)−δ),0)). (11)

We can expect that, if we use MProposed instead of MProvot in
Equation 11 (let’s call it CProposed(H)), CProposed(H) can be tighter
than CTang(H). According to the discussion given in Section 3,
the spread angle difference between CTang(H) and CProposed(H)
is zero when N(0) + N(1)− δ points the mid-point of N(0) and
N(1), and the difference increases as N(0)+N(1)−δ points away
from the mid-point.

3.4. Implementation

This section explains how the above cross-sectional analysis is ap-
plied to the real situation in 3D, i.e., if we denote the proposed
merging in 3D as MProposed , we explain how to find aProposed and
θProposed in

MProposed(B1(a1,θ1),B2(a2,θ2)) = B(aProposed ,θProposed).

Firstly, we perform the cross-sectional calculation. For that, we
imagine the cross-section in a polar coordinate system with a1 as
the polar axis. Then, we can draw the other axis a2 by calculating
cos−1(a1 · a2). Then, the spread angles θ1 and θ2 give φ11, φ12,
φ21, and φ22. We can use Equations 7 and 8 to calculate αProposed
and θProposed , respectively. Now, only the calculation of aProposed
remains, which is nothing but the spherical linear interpolation
(Slerp) [Sho85] of a1 and a2 by the angular amount αProposed .

Note that, for the inclusive cases (Figure 3 (b), (c)), we set the
outer cone as the result without performing the Slerp. Also, if any
of θProposed , θ1, and θ2 is greater than or equal to π

2 , then the spread
angle of the parent nodes (as well as the current node) is set to π

2
without further calculation.

4. Experiments

To see how much reduction the proposed method brings in the
spread angle, triangle pair test, and time, we implemented the pro-
posed method and collected various statistics as we ran the clothing
simulation with two ensembles and two onepiece dresses, which are
shown in Figure 4. The computer we used for the experiments was
Intel Core i9-9900 3.60GHz CPU.

There are several other techniques that can affect culling per-
formance. In this work, we considered whether to include the
culling techniques NP filter [TMT10a], BVTT-Front [TMT10b],
R-Triangles [CTM08] to the simulator. For all simulations in this
work, we included the NP filter and R-Triangles, but we excluded
BVTT-Front since it may hinder fair comparison.

(a) Ensemble 1 (b) Ensemble 2 (c) Onepiece 1 (d) Onepiece 2

Figure 4: Experimented cases

Figure 5: Spread angle at a non-leaf node over simulated time
steps

4.1. Reduction in the Spread Angle of BVH Cones

In the following, PROPOSED means the simulations with
(MProposed , CProposed) and PROVOT means the simulations with
(MProvot , CTang). In the draping, for all cases, PROPOSED and
PROVOT produced the same results. To see how much spread an-
gle the PROPOSED reduces compared to PROVOT, we selected a
node somewhere in the middle of the BVH while simulating En-
semble 2. For that node, as the PROPOSED and PROVOT simula-
tions progress, we measured the spread angle. As Figure 5 shows,
the difference is conspicuous.

Barequet and Elber [BE05] proposed an algorithm that can pro-
duce the optimal bounding cone that includes the given normal set,
where the number of normals in the set can be arbitrary. In order to
construct the normal cone of a NCH node with this method, the nor-
mals of all the descendent triangles of the node must be given, and
it is an O(n logn)-time algorithm, where n is the number of given
normals. Therefore the method is inadequate for NCH construction.
However, the method can be used to see how the spread angles of
PROPOSED and PROVOT compare with the optimal spread angle.
For that purpose, we calculated the optimal normal cone for a par-
ticular node using Barequet and Elber’s method, which is plotted in
grey (named as OPTIMAL) in Figure 5.

4.2. Reduction in the Number of Triangle Pair Test

Table 1 compares the number of triangle pair tests. PROPOSED
takes clearly fewer tests than PROVOT. The reduction rate was on
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# of Triangles PROVOT PROPOSED
Ensemble 1 18,920 39,997.78 30,795.03
Ensemble 2 34,877 87,607.41 60,140.21
Onepiece 1 20,849 50,518.85 39,499.42
Onepiece 2 61,949 165,412.73 122,977.72

Table 1: Average number of triangle pair test

Figure 6: Number of triangle pair tests over simulated time steps

average 25.45%. Figure 6 plots the number of triangle pair tests in
Ensemble 2 as the simulation progresses up to the 500th frame. It
shows that the reduction is quite consistent across the frames. (In
the other cases, we obtained similar results.)

4.3. Reduction in Time

Table 2 summarizes the time comparison. We observed that, for
PROPOSED, construction of BVH takes slightly more time, but the
remaining part of collision detection (including the BVH traver-
sal) takes significantly less time. In total, the reduction of PRO-
POSED with respect to PROVOT in time was on average 18.24%.
(We note that OPTIMAL is computationally very expensive com-
pared to PROPOSED. Optimal takes on average about 4,000 ms to
construct BVH.)

5. Conclusion

When simulating thin deformable objects such as clothes, collision
detection alone takes a lot of computation. One way of reducing
the computation is culling false-positives as much as possible. In
the context of BVH, Provot [Pro97] proposed a culling method that
is based on hierarchical merging of normal enclosing cones. When
two cones are given, the merging produces a single cone that en-
closes the two given cones. For culling efficiency, it is desirable the
merging should be done as tightly as possible.

In this work, we investigated Provot’s merging algorithm
MProvot and found that there is some room for improvement in
the case of binary merging. We proposed a new merging algorithm
MProposed which always produces an equal or tighter mergence
than MProvot . Inspired by CTang, by employing MProposed , we pro-
posed a new cone enclosing algorithm CProposed targeted for CCD.
The experiment showed that (MProposed , CProposed) out-performs
(MProvot , CTang) in the spread angle, triangle pair tests, and time.
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