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Abstract
Surveillance cameras are expected to work also in bad visibility conditions, which requires algorithmic solutions to improve the
captured image and to eliminate image degradation caused by these weather conditions. Algorithms for such tasks belong to
the field of computational photography and have been successful in eliminating haze, fog, motion blur, etc. This paper presents
a simple algorithm to suppress rain or snow from single images. The algorithm uses energy minimization, and we propose a
novel data term and a Bregman distance based regularization term reflecting the particular properties of precipitation.

1. Introduction

Rain or snow may degrade visibility conditions, which makes it
difficult for automatic object detection algorithms to execute their
tasks. Therefore, a pre-processing step is needed that eliminates
these degradations and reconstructs the image of the scene which
would be similar to the one made under ideal visibility conditions.
Such approaches are called de-raining or de-snowing methods and
are expected to remove rain or snow streaks from the image. As
precipitation is a temporal phenomenon, de-raining or de-snowing
can work in the temporal domain exploiting the correlation of video
frames [GN04, KSK15]. However, if the scene is not static or the
camera itself is moving, the temporal correlation of the colors of
the same pixel disappears. If such correlation is still forced on the
video sequence, motion blur artifacts may show up. One approach
to attack this problem is to process single images based on spatial
coherence only. Single image de-raining is difficult and less reliable
because of the lacking temporal information [LAR∗19].

2. Previous Work

Hase et al. [HMY99] used temporal median filter to eliminate snow
fall. The main problem of median filtering is that rain or snow is
not a point-like phenomenon, and they can occupy a larger portion
of the image for multiple frames. Thus, a median filter would be
able to eliminate precipitation if it considered a larger neighbor-
hood, which would result in blurring artifacts. The size of the spa-
tial neighborhood can be reduced by recognizing that rain droplets
produce vertical streaks.

To reduce motion blur at non-rainy parts, Garg and Nayar
[GN04] concluded that snowy or rainy pixels are brighter than
the occluded background, and thus detected rainy pixels by check-
ing if their intensity is higher than in adjacent frames. Zhang et
al. [ZLQ∗06] increased the robustness by introducing photometric
constraints: a pixel color should be dominated by the background

color, and the brightness changes of rainy pixels should be similar
through an entire sequence. Motion blur artifacts can be reduced by
optical flow estimation [MX11], but its implementation does not al-
low the processing of high resolution images in real-time.

Single image de-raining is an ill-posed decomposition prob-
lem. Non-perfect decomposition may only weaken streaks or
over-smooth details. The missing information may be sup-
plied by a prior. Prior-based techniques include sparse coding
[KLF12, HKWL14, LXJ15], low-rank representation [CH13] and
Gaussian mixture models [LTG∗16]. These approaches work well
as long as the prior assumption is valid, but fail in complex sce-
narios. Additionally, as they lead to non-convex optimization, the
implementation is complicated and running times are long.

Deep learning approaches learn the mapping from the rainy to
the de-rained image by training on rainy and ground truth pairs
[ZP18]. Unfortunately, it is difficult to obtain such image pairs.

Non-linear or non-local filtering [KLSK13] or energy minimal-
ization methods can also be used to de-raining, where the objective
is to suppress vertical and elongated features [JHZ∗19]. Oblique
streaks can be attacked by rotating the image or by the application
of directional total variation [WHZ∗19].

This paper investigates single-image de-raining with energy min-
imization. The novelties are the data fidelity and smoothness terms
taking the properties of precipitation into account, and the applica-
tion of Bregman distance in the energy function.

3. Proposed de-raining algorithm

Snow crystals scatter light diffusely and their albedo is close to one
on all wavelengths, i.e. they look brighter than other objects behind
them. Rain droplets reflect and also refract light. As rain droplets
gather light from a larger solid angle than they are visible from
the camera, they also look brighter than occluded objects. Rainy or
snowy pixels are also less saturated than pixels of no precipitation.
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Thus, the added effect of rain or snow is positive on all wave-
lengths and natural, which enables us to define a criterion for po-
tentially useful pixels to filter the target pixel.

Let us consider the input image and denote the color of a pixel
at position (i, j) by Ii, j = (Ii, j,r,Ii, j,g,Ii, j,b) on the wavelength of
primary colors. The output color of the same pixel is denoted by
fi, j = (fi, j,r, fi, j,g, fi, j,b). We apply an energy minimization method.
First a functional is established that is large when the output is far
from the input or it has high variation due to precipitation, then the
output image is found by minimizing the functional. Our energy
functional has a data term D(fi, j,Ii, j) penalizing that difference be-
tween input I and output f which cannot be caused by rain, and a
regularization aka smoothness term R(f) penalizing the variation
caused by precipitation:

E(f) = ∑
i, j

D(fi, j,Ii, j)+λR(f)

where λ is the regularization parameter. In order to allow an effi-
cient solution of this minimization problem, we require the energy
be a convex function of optimization variables fi, j,c where c is the
index of color channels r,g,b.

Both the data and the smoothness terms contain differences of
pixel colors. The data term depends on the difference of the in-
put and output values of the same pixel, the smoothness term on
the difference of the output values of neighboring pixels. In both
cases, we need to consider what kind of differences precipitation
can cause.

3.1. Data term

We follow the observation that the added effect of rain or snow is
positive on all wavelengths and natural. Let us consider the differ-
ence of the observed and true color values

Ii, j− ftrue
i, j = (∆r,∆g,∆b), ∆m = min(∆r,∆g,∆b). (1)

If minimal gray difference ∆m is positive, then rain of luminance at
most ∆m could be the cause of the increase from ftrue to I. The data
term should only minimally penalize those differences between the
input I and the output f which are caused by the precipitation. How-
ever, spectral changes (∆r−∆m,∆g−∆m,∆b−∆m) cannot be ex-
plained with added rain, thus these should contribute to the penalty.
If ∆m≥ 0, then an appropriate penalty is

D = (∆r−∆m)2 +(∆g−∆m)2 +(∆b−∆m)2 +ξ(∆m)2. (2)

Factor ξ controls the strength of penalizing added natural color. As
we wish to preserve variations except those caused by precipitation,
penalty of color changes and luminance decrease should be much
higher than that of luminance increase, thus parameter ξ must be
close to zero. We used ξ = 0.01 in our experiments.

If ∆m is negative, then color I cannot be the rainy version of
ftrue , thus the total difference (∆r,∆g,∆b) is due to factors other
than rain. In such cases the optimal choice is f = I, so other values
should be penalized based on their distance from the optimum:

D = (∆r)2 +(∆g)2 +(∆b)2 (3)

Note that this is an asymmetric but a convex function of the op-
timization parameter.

3.2. Smoothness term

The smoothness term depends on the changes i.e. gradients caused
by the precipitation. As rain adds neutral colors, it modifies all
channels in the same direction causing changes of luminance and
not chroma. Therefore, we use the gradient of the luminance

l = (r+g+b)/3 (4)

in our smoothness term if the gradient of all color channels have
the same sign. If color channels change in different directions, this
difference is not caused by rain, and therefore not penalized setting
the gradient to zero. Note that with this decision, the changes due to
the regularization are always gray, thus hues of the original image
are preserved.

As the rain streak is strongly directional phenomenon, we apply
a direction sensitive gradient, which emphasizes horizontal changes
by factor 20. The gradient at pixel (i, j) can be estimated by finite
differences in the discrete data. Here the crucial choice is the norm
used in the regularization term. L1 or Total Variation regularization
would take the sum of absolute values:

R(f) = ∑
i, j
|~gi, j|. (5)

Although, Total Variation regularization does not blur edges as
L2 regularization does, but it also has problems. When its deriva-
tives are computed, we should solve the problem that the absolute
value function has no derivative at zero. We can use the following
approximation where β is a small positive constant:

|~gi, j| ≈
√
~g2

i, j,x +~g2
i, j,y +β. (6)

Total Variation measures the distance between the constant function
and the actual estimate. The variation of the true solution is also
penalized, so the optimum would be modified. As a result, Total
Variation regularization results in reduced contrast solutions having
stair-case artifacts. In theory, the optimal weight can be obtained
with Hansen’s L-curves [Han00] but it has no practically feasible
generalization to larger scale problems. Setting the regularization
term is a trial and error process, and the algorithm is quite sensitive
to it. These problems can be attacked by Bregman iteration, which
makes the method less sensitive to the regularization parameter.

3.3. Bregman iteration

An optimal regularization term would have its minimum
at the ground truth solution when f = ftrue, and would
measure the “distance” B(f, ftrue) between f and ftrue. An
appropriate distance function is the Bregman distance
[Bre67, YODG08, YBCV13, SKTJ14] that can be based on
an arbitrary convex penalty term, for example, on the Total
Variation:

B(f, ftrue) = R(f)−R(ftrue)−〈p, f− ftrue〉 (7)

where 〈·, ·〉 is the 3N dimensional scalar product where N is the
number of pixels in the image, and p is the gradient of R(f) at ftrue,
i.e. pi, j,c = ∂R/∂fi, j,c if it exists. Note that R is not required to be
differentiable everywhere, thus we can use inequalities in the defi-
nition of the smoothness term.
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Figure 1: Bregman distance in 1D.

In practice, we do not know the true solution, so it is replaced
by an earlier estimate f(k). Note that if the regularization term is
linear between the true solution and f(k), then this approximation
is precise. Total variation is based on the absolute value function,
which results in a piece-wise linear regularization term, making it
particularly attractive for Bregman iteration.

Inserting the Bregman distance into the energy, we get

E = ∑
i, j

D(fi, j,Ii, j)+λB(f, f(k)). (8)

This energy term is minimized with gradient descent, thus in it-
eration step n, processed image f(n) is updated as

f(n+1) = f(n)−α∇E (9)

where α controls the step size.

The gradient of the energy term is

∂E
∂fi, j,c

=
∂D(fi, j,Ii, j)

∂fi, j,c
+λ

(
∂R

∂fi, j,c
−p(k)

)
. (10)

Using our definitions, the partial derivative of the data fidelity term
with respect to channel r can be computed as:

∂D(fi, j,Ii, j)

∂fi, j,r
= 2


∆g+∆b− (2+ξ)∆r if ∆r = ∆m≥ 0,
∆m−∆r if ∆r 6= ∆m≥ 0,
−∆r otherwise.

(11)
where Ii, j−fi, j = (∆r,∆g,∆b). Other color channels can be handled
similarly. The partial derivative of the smoothness term is

∂R
∂fi, j,c

=
~gi, j−1,x√

~g2
i, j−1,x +~g2

i, j−1,y

+
~gi−1, j,y√

~g2
i−1, j,x +~g2

i−1, j,y

+
~gi, j,x +~gi, j,y√
~g2

i, j,x +~g2
i, j,y

(12)

if gradient~g is non-zero.

When k is incremented, the gradient vector of the total variation,
p, should be updated. This can be done directly considering the
criterion of optimality, i.e. the gradient of the energy is zero:

(∇E)(ftrue) = (∇D)(ftrue)+λ

(
(∇R)(ftrue)−p(k)

)
= 0 (13)

and p is the gradient of the Total Variation R:

p(k+1) = (∇R)(ftrue). (14)

From these, we can obtain

p(k+1) = p(k)− 1
λ
∇D. (15)

The number of k increments should be small, otherwise the rain is
introduced back into the solution.

4. Results and discussion

The proposed algorithm has been implemented in OpenGL/GLSL.
As a single step of the gradient descent is similar to convolution,
the algorithm is particularly suitable for GPU implementation. The
method has been evaluated on the image database of [LTG∗16].
Some representative images are shown in Figure 2. Note that the
new method, called Bregman, is superior to TV regularization and
effectively removed rain streaks while only moderately blurring the
target image. For the Bregman method, we set λ = 0.4, for the TV
regularization, λ= 0.2 since TV has stronger blurring when the reg-
ularization factors are similar. Comparing to the Deep learning so-
lution [ZP18], Bregman is more aggressive, so it leaves less streaks
on the image, but also reduces the sharpness of rain-free image
parts. The running time of the algorithm depends on the number
Bregman iterations (we used k ≤ 5) and the number of conjugate
gradient subiteration steps (we took n≤ 10k).

The proposed algorithm relies on the rain model stating that rain
adds gray to the ground truth. There are cases, when this is not true,
thus the rain is not removed. On the other hand rain free images
can also produce gray variations, which should be preserved, but
the algorithm reduces them.

5. Conclusions

This paper proposed an energy minimization approach to de-
raining images. We defined the data and regularization terms to
penalize variations caused by rain and changes from the im-
age that cannot be explained by added rain. To handle the non-
differentiability of the regularization term and to address the prob-
lems of Total Variation regularization, we used Bregman distance
in our energy functional.
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