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Figure 1: Estimation of garment patterns from a 3D geometry. The triangles in the input mesh (left) are classified using a neural network
into different types of pattern e.g., front, back and sleeve. The flat pattern shapes (right) are computed by developing the three-dimensional

mesh for each pattern type.

Abstract

Three-dimensional scanning technology recently becomes widely available to the public. However, it is difficult to simulate
clothing deformation from the scanned people because scanned data lacks information required for the clothing simulation. In
this paper, we present a technique to estimate clothing patterns from a scanned person in cloth. Our technique uses image-based
deep learning to estimate the type of pattern on the projected image. The key contribution is converting image-based inference
into three-dimensional clothing pattern estimation. We evaluate our technique by applying our technique to an actual scan.

CCS Concepts

* Computing methodologies — Shape modeling; Neural networks;

1. Introduction

Scanning the three-dimensional geometries of people has become
popular thanks to the development of photogrammetry technology,
which does not require any special optical devices other than ordi-
nary cameras. However, the scanned geometry is stationary and is
difficult to naturally animate because the scan lacks the informa-
tion required for clothing simulation such as segmentation between
clothing and body, and clothing pattern information.

In this paper, we present a technique to reconstruct clothing pat-
tern from a 3D geometry of a clothed person typically obtained
from 3D scanning and subsequent mesh clean-up. Our technique
leverages image-based deep learning to estimate the type of pattern
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on the projected images. Our key contribution is the technique to
convert two-dimensional image-based inference into clothing pat-
tern type estimation on the three-dimensional geometry. We present
a way to combine several two-dimensional inferences that are taken
from multiple viewpoints to produce a single estimation of the pat-
tern type on three-dimensional geometry. We chose to estimate gar-
ment patterns from multi-view projected images rather than directly
from 3D data because many highly successful deep learning clas-
sification models are based on image data. By flattening the esti-
mated pattern on the three-dimensional geometry, shapes of two-
dimensional patterns are computed. We evaluate our technique by
estimating the clothing pattern from the actual scan.
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Figure 2: Workflow of our method.

2. Related Work

Garment reconstruction from scan Chen et al. [CZL*15]
presents a technique to capture the three-dimensional shapes of
clothing from depth scan. However, they do not estimate the pat-
tern. So the captured clothing may not physically correct. Cloth-
ing geometry is estimated from the dynamic scan in [PMPHB17],
however, the geometry lacks the pattern information. Raquel et
al. [VSGC20] presented a learning-based approach to simulate gar-
ments with different mesh topology.

Pattern estimation from image Yang et al. [YPA*18] pre-
sented a framework to infer clothing patterns and their shapes.
Wang et al. [WCPMI18] predicts the patterns and their three-
dimensional shapes from the user’s sketch input. More recently
Bhatnagar et al. [BTTPM19] presented a method to synthesize
three-dimensional body and clothing shapes with texture from few
frames of the video. However, these studies do not take a three-
dimensional scan as an input.

Geometric flattening Geometric approaches are studied for de-
veloping three-dimensional surface to two-dimensional flat shape
while optimized seam has been studied [PTH* 17,SC18]. However,
because there are multiple patterns to achieve a similar clothing
shape, it is difficult to determine the patterns purely from the ge-
ometry. Instead, we estimate the shape of patterns leveraging the
pre-existing way to construct patterns.

3. Method

The scanned triangle mesh typically does not have a consistent
topology. The numbers of the vertices are different in each scan and
there is no correspondence in their ordering. Thus, it is difficult to
directly input the triangle mesh to the neural network. Hence, we
render the triangle mesh into the image and predict the clothing
pattern on the image. Figure 2 shows the overall workflow of our
method.

3.1. Generation of Input and Output Images from a Mesh

View transformation Given an input geometry that is constructed
from a set of triangles 7, we render its normal map image from
multiple viewpoints. Let V the set of the viewpoints where the

Ay, v € V stands for the Affine transformation that maps the global
coordinates to the local camera coordinates.

In this paper, the projection is orthogonal and we project the ge-
ometry into 2mx2m image plane with the resolution of 256x256
pixels. To make the input mesh fit into the view, we compute the
bounding box of the input mesh and translate the center of the
bounding box to the origin.

Input image The neural network takes normal map image (i.e.
input image IT'") as the input. The input image has three chan-
nels storing values of the surface normal computed in the camera
coordinate Ayn; where the n, € R? is the normal of the triangle
t € T. As for the background, we set the value as (1,1, l)T. Be-
cause the normal map does not take this value, the neural network
can easily differentiate the background and foreground. The nor-
mal map can be efficiently computed by rendering the mesh with a
programmable shader. Specifically, we used GLSL in the OpenGL
graphics library.
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Figure 3: Left: projection of the probability. Right: relaxation of
the probability on the triangle mesh.

Output image The input image is feed into a neural network that
produce output image T°" . Each pixel of the output image has the
probability of the types of patterns (e.g., background, front, back,
right sleeve, and left sleeve) of the corresponding triangle showing
in the pixel. The output image has M + 1 channels where the M is
the number of the panels. The additional channel stores the proba-
bility that the pixel does not show the garment (i.e., showing body
or background). Because each channel stands for the probability,
the sum of them becomes one 2%:11 pm = 1, which is typically
achieved by the softmax operation at the output layer of the neural
network.
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3.2. 3D Clothing Pattern Type Segmentation

Projection of probability Given the set of output images Zo"
from multiple different viewpoints and their corresponding Affine
transformation A,, we compute the pattern classification on the tri-
angle mesh. As shown in Figure 3, given a triangle ¢ in the mesh,
we first compute the center of the gravity of the triangle x; € R3.
With the Affine transformation of the center position A,x;, we find
the corresponding pixel in the image by looking at the horizontal
and vertical coordinates on the camera. Let us denote the probabil-
ities of the pixel for the triangle ¢ and viewpoint v as pyy € RMH1
We first compute the weighted sum of the probabilities

Pr = Z WeyPrv, Wt = Z Wry. (1)
vey vey
Here, the weight wy, € R takes zero if the triangle is occluded and
not shown in the pixel. The weight is scaled by the inner product
of surface normal and the projection direction in the camera coor-
dinate e,y to prioritize the triangle facing the image

/o if occluded @
Wry = (Avny) - €gepy,  if not occluded.

Note that the weight is equal or greater than zero wy, > 0 as the
non-occluded triangle is always facing the projection direction to
some extent.

We check the occlusion efficiently without ray-triangle intersec-
tion computation on the CPU. When we render the normal map
image, we obtain the depth image as the by-product of the hidden
surface removal using the Z-buffer method. For a triangle ¢, if the
depth of the pixel and the depth computed from the Affine trans-
formation A,x; are within a certain threshold, we conclude that the
center of the triangle is not occluded.

Relaxation Due to the occlusion, certain triangles do not get much
inference via projected probability i.e, the w; is small. Hence, we
diffuse the probability by computing the average among the neigh-
boring three triangles to relax the triangle-wise prediction

p, = (1—a)p; +a Yy Wi, Pr; 3)
ti€Neighbor(t;)

wy;, = (1—a)w;, +a Z Wi, “4)
tj€Neighbor(t;)

Here, we use the relaxation coefficient oo = 0.2 and we iterate this
relaxation 20 times. Note that the number of the iteration is changed
according to the mesh resolution — finer mesh requires more itera-
tion. Finally, for each triangle, we set the pattern type that has the
largest probability.

3.3. Developing Pattern

After we estimate the pattern type for each triangle in the mesh, we
flatten the surface to compute the two-dimensional pattern shape.
There are a lot of flattening approaches presented in the graphics
community. Here, we used the approach based on the exponential
map [SGWO06] for the fast and robust mesh flattening.

As shown in Figure 4, for each pattern type, we first compute
the triangle that is located at the center of the pattern. We find this
center triangle by computing the maximum distance inward from
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Figure 4: Flattering classified triangle mesh. We first find out the
center of the triangle mesh of the same pattern type by computing
the maximum distance from the boundary using the Dijkstra’s al-
gorithm (left). Then, we compute two dimensional coordinate from
the center

the boundary using Dijkstra’s algorithm [Dij59]. The boundary of
the pattern is defined as the edges of triangles neighboring trian-
gles with other types of patterns. Then, we compute the minimum
distance for each triangle in the same pattern outward from the cen-
ter triangle using again the Dijkstra’s algorithm. For the Dijkstra’s
algorithm, we compute the distance between neighboring triangles
as the geodesic distance between the centers of the triangles. Using
the exponential map approach, we propagate the two dimensional
coordinate from the center triangle by computing the weighted av-
erage of the two-dimensional coordinates of the neighboring trian-
gles with smaller geodesic distance.
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Figure 5: Our training data is synthesized by simulating clothing
on five different body shapes and three different clothing patterns.

3.4. Training Dataset Generation

Training data for the neural network consists of a pair of input im-
age 7" and the output image Z° We prepare many of these im-
ages via synthetic data generated via clothing simulation. We use
SMPL model [LMR*15] to generate various body shapes with dif-
ferent poses. Then, we simulate clothing using our in-house cloth-
ing simulation code. We used the image-to-image translation net-
work based on the U-net [RFB15] as the neural network architec-
ture where the loss is the Cross entropy between the probabilities
in the output image generated by the neural network and that of
training data. Figure 5 shows an example of our training data. Each
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combination of body shape and clothing pattern produces 100 im-
ages with random scale, translation, and camera angle, which to-
tally amount to 1,500 images. Then, we divided them into 1,400
images for training, 80 image for validation, and 20 images for test.

4. Results

Training In total, we prepared fifteen geometries of people in the
cloth by simulating clothing on the combination of five different
poses and three different clothing patterns (see Figure 5). For each
geometry, we capture one hundred pairs of images for training. We
trained the neural network for fifty epoch and it takes 1 hour for the
training on the Google Colab. Figure 6 shows the convergence of
the training of the neural network.
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Figure 6: Convergence of the accuracy in the network training. Af-
ter training, the network estimates pattern shapes for the synthetic
geometry (“pose E” with “long sleeve shirt” in Figure 5) from un-
seen view angles producing shapes similar to the original pattern.
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Figure 1 shows the input geometry and the predicted pattern for
the three-dimensional model of a person wearing a T-shirt esti-
mated from the four view points (front, back, right and left). Fig-
ure 7 shows the comparison between the pattern estimation re-
sult from two viewpoints (front and back) and the four viewpoints
(front, back, right and left).

The estimation using the four viewpoints improved the quality
of the pattern classification demonstrating that our projection and
relaxation algorithm can successfully combine estimations from the
multiple viewpoints. For each prediction, the image-based neural
network takes 50 ms and other procedures including projection and
flattening takes about 35 ms for the four viewpoint estimation (the
time is measured with 13-inch Macbook Pro mid-2014 model).

5. Limitation and Future work

Our method predicts the pattern on the projected image, and hence
it is difficult to predict the pattern type where it is heavily occluded.
Another limitation is that the current flattening is not very accu-
rate because the algorithm does not consider the stretch of the fab-
ric. The estimation of the stretch from geometry might be possible
through other neural network models but it is left as future work.

4 viewpoints 2 viewpoints 4 viewpoints 2 viewpoints

Figure 7: Pattern estimation with different number of viewpoints.

In the current pattern prediction, the boundaries of the pattern are
jagged. For clothing simulation, another procedure to smoothing
boundary is necessary. Enforcing the symmetry of the pattern in
the prediction is important but it is left to be done as future work.
So far, we only tested our method on the pattern of T-shirts. We are
planning to test our algorithm for a wider variety of garments such
as skirts and jackets.
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