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Abstract

In this paper we present a framework for modeling cable-driven soft robots fabricated from silicone rubber - an incompressible
material. Our forward simulation model can use either the standard or the mixed formulation of the finite element method
(FEM). The latter prevents volumetric locking for incompressible materials and is more accurate for low resolution meshes.
Hence, we show that mixed FEM is well suited for estimating elastic parameters and simulator validation. We also introduce a
cable actuation model using barycentric coordinates and then use it to solve some simple control problems.

CCS Concepts

* Computing methodologies — Physical simulation; * Computer systems organization — Robotics;

1. Introduction

Soft robots are an emerging type of robots usually made of continu-
ous deformable elastic parts. The majority of these robots are fabri-
cated using silicone rubber which is a soft incompressible material.
This means it can easily bend, shear or twist without changing its
overall volume, similarly to soft organic tissue. In technical terms,
this means it has a Poisson ratio of exactly 0.5 or an infinite bulk
modulus. It is well known that such materials cause various prob-
lems to FEM simulators. For instance, locking manifests through
abnormally low deformations even for high resolution meshes. This
can be addressed by using incompressibility constraints and a spe-
cial discretization scheme for pressure known as the mixed for-
mulation of FEM [ST91]. In this paper we employ mixed FEM
along with standard FEM to simulate silicone rubber. We show
how to use this model to solve inverse problems often occurring in
robotics, e.g. parameter estimation and control. This work is based
on our previous work on locking and mixed FEM [FARE21] and
also draws inspiration from [KN19].

For isotropic elastic materials there are usually two parameters.
These can be the Lamé parameters u and A, or the Young’s modu-
lus E and the Poisson ratio v. Nonlinear material models that use
these parameters include Saint Venant-Kirchoff and Neo-Hookean,
of which we will use the latter as in [FARE21] (other nonlinear ma-
terials have not been implemented yet). We left out the density of
the body p as it is easier to measure in the real world. In our case we
found p = 1080 kg/m3 for the Ecoflex silicone used for molding.

2. Related work

Recently a lot of attention has been given to modeling and control-
ling soft robots fabricated from silicone rubber. Researchers from
ETH optimized a soft robot locomotion policy using an underlying
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inverse FEM model [BBPC19]. The Defrost team devised control
policies using the SOFA simulator that also take into account con-
tacts [LVC*15]. Also, a lot of effort was put into the forward sim-
ulation of soft robots and their environment [MEM*19, GML*19].
In computer graphics, similar problems were solved for controlling
virtual soft characters [TTL12].

For parameter estimation there has been significant work on
data-driven cloth models [WOR11, MBT*12]. We also mention
work on volumetric soft bodies [BBO*09, MMO16], time depen-
dent estimation [WWY *15], and computational design [STC*13].
A more recent work focuses on visco-elastic parameter estima-
tion for cable-driven soft robots made of silicone rubber foam
[HBBC19]. We draw inspiration from all of these sources and oth-
ers, but what differentiates us is the use of mixed FEM for locking
avoidance. We also present a cable model based on a barycentric
embedding inside the finite elements, which we have not seen de-
scribed in the cited work.

3. Forward and backward models

In brief, an FEM simulator most often reduces to solving a nonlin-
ear equation f(x) = 0. This equation is usually (but not always)
the optimality condition of a minimization problem with objec-
tive U(x). Hence, f = —dU/dx is the total force acting on the
system. One case where the equations are not partial derivatives
of an energy function is the mixed formulation of FEM. In this
case, the equations form a saddle point problem. We will not go
into details about mixed FEM here (see [FARE21] or Section 10.2
in [Wri08]), but we will use it in order to avoid locking. The gist
of the mixed pressure-displacement formulation is to enforce a vol-
umetric soft constraint. This is done by discretizing both the posi-
tions and the pressure field. The most common choices for the con-
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Figure 1: Parameter estimation for the hammerbot soft robot. From left to right: the hammerbot hanging under gravity, an approximate mesh
modeled in Maya, an estimated mesh simulated using standard FEM and finally one using mixed FEM.

straint are J — 1 = 0 or log(J) = 0, where J describes the change
of a small volume element (the determinant of the deformation gra-
dient) [BW97]. For the finite element discretization, we use linear
shape functions for both the displacement and pressure fields. This
is rather non-standard, but it is non-locking nevertheless. After dis-
cretization, these constraints can be encoded as a vector function
o(x) = 0. We wrote the code in C++ and exposed most of the fea-
tures to Python using pybind11. Our solver of choice was Newton
with line search and we implemented it using the Eigen library with
MKL and Pardiso solver integration, as described in [FARE21]. In
this paper the forward model is used to calculate the current state
of the system X, as part of solving an inverse problem.

In general, the inverse problems we are looking to solve try to
minimize a loss function O(x(a)) with regard to the model param-
eters o.. As we are usually interested in the gradient of the objective
and the positions x are a function of o we need to apply the chain
rule. As 00/0x is usually easy to evaluate, the hard part is in evalu-
ating dx/da.. We exemplify using the following often-encountered
least squares scenario:

minimizeq § [|x(ct) — X[|?, )

where X are some target positions. We will modify this problem
template to estimate elastic parameters (Section 4) and control a
cantilever beam (Section 5). The gradients we are looking for can
be evaluated using sensitivity analysis [MMO16]. They can be ob-
tained from solving the set of linear systems

ox of

Jdoa  do’
where H is the Hessian of U (x). For the mixed formulation, H can
no longer have the same meaning, but it can be calculated as H =
%27[2] +GTC7!'G through static condensation, where G = V¢(x)
is the Jacobian matrix of the volumetric constraint function and C
is the so-called compliance matrix. We will not go over the con-
struction of the compliance matrix, but in the simplest case you can
picture it as C = AL In the general case, the identity matrix is re-
placed by a weighting matrix that depends on the mesh topology,
element volumes and discretization order. The only remaining thing
to do is to evaluate the gradients of the total force w.r.t. the model
parameters, of /do.. This is quite easy to do as the dependence on
parameters is usually linear. First, we need to be able to split the
force into components that are independent functions of each o;.
Then it is simply of matter of dividing by o; or evaluating the func-
tion without the o; term. The same logic applies to mixed FEM,

but this time we need to calculate the volumetric force separately
as GTp, where p is a vector of Lagrange multipliers associated with
the pressure field.

4. Parameter estimation

The goal of parameter estimation is to estimate the values of some
physical parameters so that the simulation gives results that are
closest to reality. Considering that we already have a target pose for
the body, we want to obtain the unknown parameters. The simplest
task we could imagine was to take the output of a known simulation
and try to reproduce the parameters by pretending we have forgot-
ten them. This is done by solving the problem from Eq. (1) where
the model parameters o are now the material parameters. We sim-
ulated a cantilever beam bending under gravity. The model is a box
of dimensions 0.1 x 0.1 x 1 meters consisting of 81 nodes and 192
tetrahedra. The Young’s modulus is £ = 66 KPa and the Poisson
ratio v = 0.45. We stored the positions resulting from a quasi-static
analysis of the beam and used them later as a target for the pa-
rameter estimation problem. We solved the inverse problem using
the gradient-free Nelder-Mead algorithm provided by the SciPy li-
brary. We were able to reproduce the exact same Lamé parameters
that were used in the initial simulation: g = 22 KPa and A = 11
MPa. The initial guesses were gy = 20 KPa and Ay = 0.2 MPa.
We managed to reproduce the same results using gradient based
optimization for both standard and mixed FEM, but this time we
employed a least squares solver fom SciPy.

For a more complex test scenario, we employed the "hammer-
bot" soft robot with a relatively fine mesh (9011 tetrahedra). We
used a photo of the real robot to deform a surface mesh in Au-
todesk Maya which we then used as a target for our estimation
process. This was done by mapping the original surface mesh to
the volumetric mesh using barycentric coordinates and deforming
it according to the result of the simulation. The mapped mesh and
the target one were compared at each iteration of the minimization
process resulting in the sought after elastic parameters. We solved
the optimization problem using the Nelder-Mead algorithm, as we
found the gradient based methods to be struggling. We obtained
two sets of results depending on wheter we used standard or mixed
FEM. For the former we obtained y = 22.9 KPa and A = 0.23 MPa
corresponding to E = 66.7 KPa and v = 0.454. But this results may
be skewed due to the initial guess of £ = 66 KPa and v = 0.45 and
locking artefacts. In other words, the simulation is not able to repro-
duce the same amount of deformation as the target unless it lowers
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Figure 2: Validation of our cable actuation model against reality.

one of the parameters. The minimizer then chooses the closest min-
imum to the provided initial guess. See Figure 1 for an illustration
of the standard FEM simulation using the estimated parameters - as
you can see the difference is quite big.

Mixed FEM, on the other hand, is much closer to the target
and reality. The parameters obtained were u = 32.3 KPa and A =
1.1 x 10'% Pa, corresponding to E = 96.8 KPa and v = 0.499999
which are very close to what we expect from the material used
(Ecoflex 00-50). This result confirms a trial and error approach we
made that put the Young’s modulus above 90 KPa, assuming the
material was incompressible. But, again, the minimizer is sensi-
tive to initial guesses for the solution. For example if starting from
Ao = 107 Pa, then the estimation for the Poisson ratio becomes
0.445 and E is close to 100 KPa. Although the mesh shape looks
good, this is clearly not correct, as the material is far from being
incompressible. This also shows that the cantilever bending test is
probably not sufficient. For less accuracy in the forward solver of
the quasi-static simulator, the parameters obtained were y = 17.4
KPa and A = 5.4-10'© Pa, corresponding to £ = 52.3 KPa and
v = 0.4999999. This shows that by not allowing the solver to con-
verge, less deformation is achieved and the estimator tries to com-
pensate by lowering the shear modulus. Hence, a non-locking ac-
curate simulator is essential in the parameter estimation process.

In terms of limitations, the non-convexity of the loss function
makes starting from different initial guesses quite important, but
also transforms the process into more of a manual trial and er-
ror routine. This can be hard for a totally unknown material, but
for Ecoflex silicone we know that E ranges between 60 and 270
KPa [GML*19, KN19]. Ideally, we would use measurements di-
rectly from reality to estimate our parameters, and have multiple
scenarios and measurements in order to cope with errors and local
minima, as it has been thouroughly done by [MBT*12, HBBC19].
For example, one could use markers on the robot or a point cloud
capture with a depth camera; or use multiple camera angles and an
extra scenario like extending or twisting the soft robot.

5. Cable actuation model

Cable actuation for soft robots is usually done by running thin
wires on the surface of the silicone or through specially created
tunnels with one end attached and the other controlled by a mo-
tor. We model these cables by dividing them into stiff springs as
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in [KN19]. The spring nodes are either embedded in the FEM body
or are free to move outside. The embedding is done by parametriz-
ing the nodes inside the closest tetrahedron using barycentric co-
ordinates. This means they do not add degrees of freedom to the
system. The free nodes are added on top of the FEM nodes and are
simulated like any mass-spring system. The free nodes are given
masses comparable to the embedded nodes, are affected by gravity
and are slightly damped. Although one can use the embedding for
outside nodes too, the free nodes have the best appearance when
the cable is relaxed (see the accompanying video).

Our cable actuation model relies on an often used approximation
for muscles and tendons [TTL12, BBPC19]. Instead of modeling
the cable sliding, we consider it attached at every node and the ac-
tuation is achieved by reducing the rest length. If all of the spring
nodes are embedded, we can write them down as y = Wx (i.e. the
interpolated points), where W is the barycentric mapping matrix.
The building blocks of this matrix are W j; = w;;I3, where wj; is
the barycentric coordinate corresponding to the jth spring node and
ith global FEM node. The springs are unilateral so that they do not
exert any forces when the cable is relaxed. The measure of defor-
mation is given by I' = L(y) — o, where L is the current length of
the spring, / is the rest length and o is a control parameter. The ten-
sion along a spring is given by T = —d¥/dI’, where W is an elastic
potential. We use the regularized model from [BKC17] that ensures
smoothness for the solver. The force acting on the jth spring node
is given by f’}”de = f;‘"_r ¢ — 17" The force along the jth spring
is obtained by multiplying the normalized spring direction by the
corresponding tension T;. Finally, for the embedded spring nodes
we can apply the inverse barycentric mapping to compute the force
contributions to the respective FEM nodes: £ = W’ §%4¢ we
chose to integrate this model using the implicit Euler scheme due
to its stability. But this lead us to evaluating Hessian matrices and
solving linear systems. For this we had to use some finite differ-
ences approximations, which made the Newton solver slower.

We were able to simulate the cable actuation for the cantilever
beam and a few soft robots, as the figures and the video demon-
strate. For the hammerbot presented in the previous section, we val-
idated the cable model against a real-life photo. The values used for
the two side cables are o = 0.82 and 0, = 1.2 and they were mea-
sured from an actual setup using stepper motors. We used a spring
constant of £ = 50 KN/m in our simulation, as using a higher value
puts strain on the solver. As you can see from Figure 2 our cable
actuation model gets quite close to reality. Using a lower stiffness
for the cable results in less deformation. Therefore, we concluded
that the accuracy of the model depends a lot on getting the spring
constants right (ideally, we would model them as inextensible). In
addition, we found that the elastic parameters or type of finite ele-
ment method had less of an impact on cable-driven deformation.

6. Cable actuation control

In order to test our cable model for controlling a soft robot, we de-
vised two simple tests for the cantilever beam. We put a cable along
one of its lower edges and actuated it at oo = 0.5. We then performed
the simulation and obtained a pose bent towards the side with the
cable. We then used this pose as a target in the inverse problem in
Eq. (1) with o as the only optimization parameter. Again, by us-
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Figure 3: Cable control experiments. Left: cantilever actuated with
a = 0.5, right: the same cantilever targeting the red sphere.

ing the Nelder-Mead algorithm we were able to replicate the initial
value of 0.5. We then performed a synthetic "end-effector" control
test. We chose the center of the free end-face of the cantilever and
took its position from the aforementioned simulation. We then per-
turbed it to a larger value on the x axis and ran the optimization
again. As expected, such an inverse problem often has no solution,
but the optimizer can find one that is closest to the point - see the
results in Figure 3.

7. Conclusions and future work

In this paper, we have presented a software framework
written in C++ and Python (available as open-source:
https://github.com/MihaiF/SolidFEM) that can solve inverse
problems for cable-driven silicone soft robots. We have demon-
strated it on two examples: parameter estimation and cable control.
For parameter estimation we were able to deduce parameters
that were close to expected values using both gradient-based and
gradient-free optimization. Of great importance was the mixed
FEM solver that could prevent locking and reproduce the defor-
mation of incompressible silicone better than standard FEM. Our
cable model showed a close match to reality, although not perfect
due to numerical issues. We then used this model successfully to
target a pose and an end-effector position. We would like to use
our mixed FEM based framework for more real life parameter
estimation. This may also require doing heterogeneous estimation
(different parameters for each element) or space-time optimization
for estimating dynamic parameters like damping coefficients. As
for the cables, we would like to model them as inextensible using
hard constraints, similar to the incompressibility constraint in
mixed FEM. We hope that using a constraint solver would reduce
the current numerical ill-conditioning and allow for more accurate
modeling of cable actuation. Just as for parameter estimation, we
would like to do more real world validation for cable control and
more complex scenarios.
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