
EUROGRAPHICS 2020/ F. Banterle and A. Wilkie Short Paper

Triplanar Displacement Mapping for Terrain Rendering

S. Weiss and F. Bayer and R. Westermann

Technical University of Munich, Germany

(a) UV-Mapping (b) Triplanar Texturing (c) Triplanar Displacement, 8x (d) adaptive Triplanar Displacement

Figure 1: Severe stretching can occur when a 2D texture is projected onto a terrain field using uv-mapping (a), which can be avoided via
triplanar texture mapping (b).We propose triplanar displacement mapping (c,d), a combination of triplanar texture mapping with tessellation,
to add geometric details to a heightfield. We extend this method via an adaptive, displacement-aware tessellation scheme (d) that achieves the
same visual quality without requiring a high-resolution base mesh (c).

Abstract
Heightmap-based terrain representations are common in computer games and simulations. However, adding geometric details to
such a representation during rendering on the GPU is difficult to achieve. In this paper, we propose a combination of triplanar
mapping, displacement mapping, and tessellation on the GPU, to create extruded geometry along steep faces of heightmap-based
terrain fields on-the-fky during rendering. The method allows rendering geometric details such as overhangs and boulders,
without explicit triangulation. We further demonstrate how to handle collisions and shadows for the enriched geometry.

1. Introduction

In computer graphics, terrains are often represented by
heightmaps [GGP∗19]. A heightmap is a two-dimensional scalar
field, usually given at the vertices of a regular grid, where every
scalar value indicates a height over some base elevation. Creating a
polygonal terrain representation that can be rendered on the GPU is
then performed by triangulating every cell comprised of 4 vertices
into two triangles, and displacing vertices along the vertical axis.
A heightmap representation, however, has limitations, since it can-
not represent geometric structures like overhangs and requires high
resolution to faithfully represent fine geometric details.

In scenarios where overhangs are crucial to the look of the ter-
rain, a possible solution is to model the terrain as a surface in 3D
using a high-resolution polygon model [LO10, PGGM09, BKRE19].
Alternatively, the terrain can be encoded as an implicit surface in
a 3D scalar field that is represented by a voxel model, and voxel-
based ray-casting is then used to render the surface [GM01, Gei07,
WQK99, LO10]. Both approaches can render overhangs and caves,
but increase bandwidth, memory requirements and rendering load.

We propose Triplanar Displacement Mapping (TDM), a combi-
nation of triplanar texture mapping and displacement mapping with
adaptive tessellation. This method works in tandem with existing

methods for rendering heightmap-based terrain representations, by
adding fine geometric details to the overall shape of the terrain. In
this paper we present methods to

• adaptively displace vertices using triplanar-sampled displacement
maps to create overhangs and holes,
• compute correct normal vectors on the displaced and normal-

mapped terrain,
• optimize the texture access patterns, and to
• include triplanar displacement mapping in existing game engines

with collisions and multiple lights and shadows.

We demonstrate that our method can be applied to both heightmap-
and voxel-based terrain representations,and can be easily included
into existing game engines. The source code of our Unity imple-
mentation is published at https://github.com/flojo33/
Triplanar-Displacement-Mapping.

2. Related Work

Many previous works in terrain rendering have focused on the han-
dling of very large terrain fields with continuous level-of-detail
and out-of-core rendering [DWS∗97, LH04, LRC∗03, Str09, SPC18,
DKW10, DKW09]. For a thorough overview, let us refer to the

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

DOI: 10.2312/egs.20201016 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-4399-3180
https://orcid.org/0000-0002-1602-6454
https://orcid.org/0000-0002-3394-0731
https://github.com/flojo33/Triplanar-Displacement-Mapping
https://github.com/flojo33/Triplanar-Displacement-Mapping
https://doi.org/10.2312/egs.20201016


S. Weiss & F. Bayer & R. Westermann / Triplanar Displacement Mapping for Terrain Rendering

Vertex Shader
(pass-through)

Tessellation
Control Shader

Tessellation
Evaluation Shader

Fragment
Shader

Splat weights

Tessellation Map Displacement Maps

Dx Dy Dz

· · ·
Dx Dy Dz

Normal Maps

Nx Ny Nz

· · ·
Nx Ny Nz

Color Maps

Cx Cy Cz

· · ·
Cx Cy Cz

Figure 2: Overview of our Triplanar Displacement Mapping pipeline. We apply
triplanar mapping with splat maps in every stage to sample displacements, detailed
normals and colors independently.

Figure 3: Triplanar displacement mapping ap-
plied to a heightmap-based terrain. The green
lines represent displacement maps projected onto
the blue base heightmapped terrain.

recent report by Galin et al. [GGP∗19]. Closely related to our ap-
proach is the work by Gamito and Musgrave [GM01], which can
render overhangs by ray-tracing a heightmap that is warped by a flow
field. To add fine-scale geometric detail to arbitrary polygon mod-
els, displacement mapping is a common approach for uv-mapped
objects [WWT∗03,Don05,SKU08,ZR19]. To the best of our knowl-
edge, however, we have not seen it being applied with triplanar
mapping.

3. Method

Our proposed method adds more details to the vertical faces of
cliffs based on displacement maps. It first utilizes GPU tessella-
tion [NKF∗15] to create more vertices along faces of the terrain
that should be extruded or indented. Then, it projects displacement
maps onto the terrain using triplanar mapping (Sec. 3.1). These
maps can displace the newly generated geometry to create more
realistic details like bumpy rocks and small overhangs. Next, normal
maps are sampled to compensate for the displaced surface. Color
maps are then sampled based on the displaced positions and sam-
pled normals. The terrain is adaptively tessellated (Sec. 3.2), and
a number of optimizations are performed to minimize texture ac-
cess operations(Sec. 3.3). To support multiple terrain types, we use
texture splatting [CM93]. In texture splatting, a four-channel splat
map (stored per-vertex) specifies interpolation weights between four
different materials. The whole pipeline is depicted in Fig. 2.

3.1. Triplanar Displacement Mapping

In traditional uv-mapping, textures are mapped to a surface mesh
using texture coordinates that are stored for each vertex of the mesh.
Since along steep cliffs, texture coordinates are close in texture
space but represent details at large spatial distances, this often leads
to severe stretching. To compensate this effect, triplanar texture
mapping [Nic08, p.16], [Gol17] is often used. The idea is to use
three textures using different parametrizations XY, XZ and YZ
and blend them based on the normal vector. Let x = (x,y,z)T be
the position of the current fragment with normal n, Tx,Ty,Tz are
respectively the three textures, bx,by,bz are the corresponding blend
factors. Then, the final color is computed as

c = bx(n)Tx(y,z)+by(n)Ty(x,z)+bz(n)Tz(x,y). (1)

We extend this principle of triplanar texture mapping to displace
geometric details along a base terrain. In traditional displacement
mapping on uv-mapped meshes, the vertex x is moved along its

normal n by a value sampled from a displacement texture D, at
texture coordinate u [SKU08]:

x← x+αD(u)n, (2)

with an optional scaling factor α for the strength of the displacement.

Our main idea is to obtain the displacement value D from triplanar
mapping (see Eq. (1)) instead of a single texture map. Therefore, the
terrain is first tessellated adaptively (Sec. 3.2), to generate additional
geometry that can be displaced. Then, the displacement is performed
in the tessellation evaluation shader using the triplanar textures
(Fig. 3):

x← x+α(bx(n)Dx(y,z)+by(n)Dy(x,z)+bz(n)Dz(x,y))n. (3)

After displacing the vertices, the vertex normal does not match
the geometry anymore. This can be corrected by recomput-
ing the normals using per-fragment derivatives as presented by
Mikkelsen [Mik10], which, however, leads to rather flat-looking
surfaces. We avoid this by computing custom normal maps that
compensate for the displacement maps using a Sobel filter [SF68].

n = normalize(

([
−1 0 1
−2 0 2
−1 0 1

]
∗D,

1
α
,

[
−1 −2 −1
0 0 0
1 2 1

]
∗D

)T

) (4)

The normals derived from these textures are then projected onto the
surface using reoriented normal mapping [Gol17], and then blended
using the blend weights as well. The normals are then used for the
triplanar texture mapping of the color textures, see Fig. 4.

An additional normal map can be blended onto the surface to
add details at a finer resolution within a certain terrain area. This is
achieved by applying reoriented normal mapping again using the
normal mapping result as described before as the base surface. This
adds details during the shading process but does not influence the
triplanar blending weights.

(a) (b)

Figure 4: Difference if detailed normal maps and color blending
after normal mapping are disabled (a) or enabled (b).

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

54



S. Weiss & F. Bayer & R. Westermann / Triplanar Displacement Mapping for Terrain Rendering

Figure 5: The tessellation map defines regions with lower and
higher roughness and correspondingly low and high tesselation,
e.g., green and red determine grass and stone, respectively.

3.2. Adaptive Level-of-Detail

Since we utilize tessellation to generate the heigh-resolution dis-
placement geometry, the amount of tessellation is specified on a
per-triangle level. For example, Cantlay [Can11] demonstrates ad-
justment of tessellation factors according to the camera distance, so
that closer triangles are subdivided more. We extend this method
by adding a factor that limits the amount of tessellation based on
the expected displacement. We note that different terrain types re-
quire different strengths of displacement, and hence require different
amounts of tessellation. To account for this, a maximal tessellation
factor per terrain type is fist selected manually. Then, a tessellation
map—stored as per-vertex attributes—is computed in a preprocess,
by blending the per-material tessellation factors using triplanar map-
ping and texture splatting. Fig. 5 demonstrates the use of the tessel-
lation map to keep the number of triangles low in areas with less
details such as grass, and increase the tessellation factor in rough
areas like boulders.

3.3. Optimized Texture Access

We support 4 different terrain types via texture splatting. Hence, our
approach requires 12 textures: three for the sides of the triplanar
mapping for each of the 4 different terrain types. Each of the 12
textures stores 11 attributes that are packed into three rgba-textures:

• Surface map (tessellation): surface normal X and Y, displacement
map, alpha is unused
• Color map (fragment): albedo rgb, emission intensity
• Detail map (fragment): smoothness, metallic, detail normal X, Y

In total, this requires to sample up to 36 textures per fragment.
This number, however, can be drastically reduced by a) reducing
the area where different terrain types overlap in the splat map, b)
sampling splat textures only if the weight is greater than some offset,
c) sampling triplanar textures only if the blend factor is greater
than some offset [Gol14], see Fig. 6. These optimizations make
the transitions between terrain types appear sharper, which is often
desired (Fig. 6b). However, care must be taken as to not introduce
sharp discontinuities due to high offsets (Fig. 6c).

3.4. Collision and Shadows

To support collisions with the displaced terrain, the steps of the
tessellation engine and the vertex displacements are replicated on
the CPU, and a collision mesh that matches the rendered terrain is

(a) (b) (c)

Figure 6: Top: Influence of blend factor offset on image quality.
Bottom: Number of texture samples (low (green) to high (red)), for
low (a), medium (b) and high (c) optimization.

+100 dynamic lights

adaptive tessellation
+tripl. disp. map.

8x resolution

triplanar texturing

base uv 100%, 52MB

254%, 132MB

739%, 384MB

255%, 132.5MB

272%, 141.5MB

100%, 1.17ms

117%, 1.37ms

736%, 8.57ms

186%, 2.17ms

296%, 3.45ms

relative change to the base in % and absolute values

GPU Memory, Mesh+Texture Frame Time

Figure 7: Benchmarking results for a simple terrain using uv-
mapping or triplanar texturing in comparison to a terrain using
triplanar displacement mapping on a brute force 8x resolution grid
and a dynamically tessellated terrain of also up to more than 8x
resolution.

generated around the player. As the player moves over the terrain,
the collision mesh is updated around the player asynchronously. We
refer to the accompanying video for a demonstration.

Shadows using traditional shadow mapping can be used in the
pipeline without major changes. Let us only note that it is crucial
that during rendering the shadow map from the light position, the
same tessellation as if the terrain was seen from the player camera
has to be used to avoid false shadowing.

4. Results and Benchmarks

Our system was tested on a workstation with an i7-9700k CPU, an
RTX 2060 GPU and 16GB of RAM. To demonstrate the perfor-
mance of triplanar displacement mapping with adaptive tessellation
in comparison to a simple uv-mapped terrain, a camera was set up
to fly over a Perlin Noise-based [EMP∗03, p. 69] infinite terrain for
a fixed number of frames (250.000) using different settings. The
average frame time and memory was recorded for different shader
variants and terrain resolutions (Fig. 7). As one can see, our method
introduces only a slight overhead in both render time and required
memory, but offers much better visual quality ( see Fig. 1 for a visual
comparison). To achieve the same quality using heightmaps without
tessellation and displacement mapping, a grid of 8x the resolution
needed and the memory requirements increase accordingly from
approx. 52MB to 384MB. Our method also fits well into a deferred
lighting pipeline, i.e., up to 100 dynamic lights can be used at a
frame time of only 3.45ms. We refer to the accompanying video for
an extended visual comparison and examples.

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

55



S. Weiss & F. Bayer & R. Westermann / Triplanar Displacement Mapping for Terrain Rendering

Furthermore, our method can also be applied to different terrain
meshes as indicated in Fig. 8. Here the mesh was created using the
marching cubes algorithm to render a surface based on 3D noise
functions [Gei07]. This demonstrates that our proposed method can
be applied to arbitrary geometry where an explicit uv-mapping is
still unfeasible.

(a) (b)

Figure 8: Cave inside a voxel terrain without (a) and with (b)
Triplanar Displacement Mapping.

5. Conclusion

We have presented a method to add fine geometric details to triplanar
textured terrain using displacement mapping. It allows to create
additional geometric details like overhangs that greatly enhance the
degree of realism. We have demonstrated that our approach works in
tandem with existing methods to render heightmap- or voxel-based
terrain, and can easily be included in existing game engines and
supports deferred lighting and collision tests. Our approach requires
only slightly more memory than traditional triplanar mapped terrain
with splat maps. With the presented optimization to reduce the
number of texture fetches, we achieve interactive frame rates even
with many dynamic light sources. It vastly outperforms approaches
using high-resolution 3D polygon models of the same visual quality
regarding both frame rates and memory. In the future, we would
like to investigate how this method can be included in an RTX
raytracing framework to support reflections and global illumination
in real-time.

References

[BKRE19] BECHER M., KRONE M., REINA G., ERTL T.: Feature-based
volumetric terrain generation and decoration. IEEE Transactions on
Visualization and Computer Graphics 25, 2 (2 2019), 1283–1296. 1

[Can11] CANTLAY I.: Directx 11 terrain tessellation. Nvidia whitepaper
8, 11 (2011), 3. 3

[CM93] CRAWFIS R. A., MAX N.: Texture splats for 3d scalar and vector
field visualization. In Proceedings of the 4th conference on Visualiza-
tion’93 (1993), IEEE Computer Society, pp. 261–266. 2

[DKW09] DICK C., KRÜGER J. H., WESTERMANN R.: Gpu ray-casting
for scalable terrain rendering. In Eurographics (Areas Papers) (2009),
Citeseer, pp. 43–50. 1

[DKW10] DICK C., KRÜGER J., WESTERMANN R.: Gpu-aware hybrid
terrain rendering. Proceedings of IADIS computer graphics, visualization,
computer vision and image processing 10 (2010), 3–10. 1

[Don05] DONNELLY W.: Per-pixel displacement mapping with distance
functions. GPU gems 2, 22 (2005), 3. 2

[DWS∗97] DUCHAINEAU M., WOLINSKY M., SIGETI D. E., MILLER
M. C., ALDRICH C., MINEEV-WEINSTEIN M. B.: Roaming terrain:
real-time optimally adapting meshes. In Proceedings. Visualization’97
(Cat. No. 97CB36155) (1997), IEEE, pp. 81–88. 1

[EMP∗03] EBERT D., MUSGRAVE F., PEACHEY D., PERLIN K., WOR-
LEY S., MARK W., HART J.: Texturing and Modeling: A Procedural
Approach: Third Edition. Elsevier Inc., United States, 2003. 3

[Gei07] GEISS R.: Generating complex procedural terrains using the gpu.
GPU gems 3 (2007), 7–37. 1, 4

[GGP∗19] GALIN E., GUÃL’RIN E., PEYTAVIE A., CORDONNIER G.,
CANI M.-P., BENES B., GAIN J.: A review of digital terrain modeling.
Computer Graphics Forum 38, 2 (2019), 553–577. doi:10.1111/
cgf.13657. 1, 2

[GM01] GAMITO M. N., MUSGRAVE F. K.: Procedural landscapes with
overhangs. In 10th Portuguese Computer Graphics Meeting (2001), vol. 2,
Citeseer. 1, 2

[Gol14] GOLLENT M.: Triplanar mapping textur-
ing arbitrary surfaces, 2014. Accessed 02/21/2020.
URL: https://gdcvault.com/play/1020394/
Landscape-Creation-and-Rendering-in. 3

[Gol17] GOLUS B.: Normal mapping for a triplanar shader, 9 2017.
Accessed 02/21/2020. URL: https://medium.com/@bgolus/
normal-mapping-for-a-triplanar-shader-10bf39dca05a.
2

[LH04] LOSASSO F., HOPPE H.: Geometry clipmaps: terrain rendering
using nested regular grids. In ACM Transactions on Graphics (TOG)
(2004), vol. 23, ACM, pp. 769–776. 1

[LO10] LENGYEL E. S., OWENS J. D.: Voxel-based terrain for real-time
virtual simulations. University of California, Davis, 2010. 1

[LRC∗03] LUEBKE D., REDDY M., COHEN J. D., VARSHNEY A., WAT-
SON B., HUEBNER R.: Level of detail for 3D graphics. Morgan Kauf-
mann, 2003. 1

[Mik10] MIKKELSEN M. S.: Bump mapping unparametrized surfaces on
the gpu. Journal of Graphics, GPU, and Game Tools 15, 1 (2010), 49–61.
2

[Nic08] NICHOLSON K.: GPU Based Algorithms for Terrain Texturing.
Master’s thesis, University of Canterbury, Christchurch, New Zealand,
2008. 2

[NKF∗15] NIESSNER M., KEINERT B., FISHER M., STAMMINGER M.,
LOOP C., SCHÄFER H.: Real-time rendering techniques with hardware
tessellation. Computer Graphics Forum 35 (9 2015). 2

[PGGM09] PEYTAVIE A., GALIN E., GROSJEAN J., MÉRILLOU S.:
Arches: a framework for modeling complex terrains. Computer Graphics
Forum 28 (4 2009), 457 – 467. 1

[SF68] SOBEL I., FELDMAN G.: A 3x3 isotropic gradient operator for
image processing. a talk at the Stanford Artificial Project in (1968),
271–272. 2

[SKU08] SZIRMAY-KALOS L., UMENHOFFER T.: Displacement mapping
on the gpu-state of the art. In Computer Graphics Forum (2008), vol. 27,
Wiley Online Library, pp. 1567–1592. 2

[SPC18] SILVESTRE A., PEREIRA J., COSTA V.: A real-time terrain
ray-tracing engine. In 2018 International Conference on Graphics and
Interaction (ICGI) (11 2018), pp. 1–8. doi:10.1109/ITCGI.2018.
8602735. 1

[Str09] STRUGAR F.: Continuous distance-dependent level of detail for
rendering heightmaps. Journal of graphics, GPU, and game tools 14, 4
(2009), 57–74. 1

[WQK99] WAN M., QU H., KAUFMAN A.: Virtual flythrough over
a voxel-based terrain. In Proceedings IEEE Virtual Reality (Cat. No.
99CB36316) (1999), IEEE, pp. 53–60. 1

[WWT∗03] WANG L., WANG X., TONG X., LIN S., HU S., GUO B.,
SHUM H.-Y., SHUM H.-Y., SHUM H.-Y.: View-dependent displacement
mapping. In ACM Transactions on graphics (TOG) (2003), vol. 22, ACM,
pp. 334–339. 2

[ZR19] ZIRR T., RITSCHEL T.: Distortion-free displacement mapping.
In Computer Graphics Forum (2019), vol. 38, Wiley Online Library,
pp. 53–62. 2

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

56

https://doi.org/10.1111/cgf.13657
https://doi.org/10.1111/cgf.13657
https://gdcvault.com/play/1020394/Landscape-Creation-and-Rendering-in
https://gdcvault.com/play/1020394/Landscape-Creation-and-Rendering-in
https://medium.com/@bgolus/normal-mapping-for-a-triplanar-shader-10bf39dca05a
https://medium.com/@bgolus/normal-mapping-for-a-triplanar-shader-10bf39dca05a
https://doi.org/10.1109/ITCGI.2018.8602735
https://doi.org/10.1109/ITCGI.2018.8602735

