
EUROGRAPHICS 2020/ F. Banterle and A. Wilkie Short Paper

MEPP2: a generic platform for processing 3D meshes and point
clouds

Vincent Vidal, Eric Lombardi , Martial Tola , Florent Dupont and Guillaume Lavoué

Université de Lyon, CNRS, LIRIS, Lyon, France

Abstract
In this paper, we present MEPP2, an open-source C++ software development kit (SDK) for processing and visualizing 3D
surface meshes and point clouds. It provides both an application programming interface (API) for creating new processing
filters and a graphical user interface (GUI) that facilitates the integration of new filters as plugins. Static and dynamic 3D
meshes and point clouds with appearance-related attributes (color, texture information, normal) are supported.
The strength of the platform is to be generic programming oriented. It offers an abstraction layer, based on C++ Concepts, that
provides interoperability over several third party mesh and point cloud data structures, such as OpenMesh, CGAL, and PCL.
Generic code can be run on all data structures implementing the required concepts, which allows for performance and memory
footprint comparison. Our platform also permits to create complex processing pipelines gathering idiosyncratic functionalities
of the different libraries. We provide examples of such applications.
MEPP2 runs on Windows, Linux & Mac OS X and is intended for engineers, researchers, but also students thanks to simple
use, facilitated by the proposed architecture and extensive documentation.

CCS Concepts
• Computing methodologies → Mesh models; Point-based models; • Software and its engineering → Software libraries and
repositories;

1. Introduction

With the increasing capability of 3D data acquisition devices, mod-
eling software and graphics processing units, three-dimensional
(3D) graphics are now commonplace in many applications from
simulation and gaming to upcoming tele-immersive communica-
tion. 3D assets commonly consist of surface meshes on which tex-
ture images are mapped (e.g. affecting surface geometry or normal,
or reflectance terms such as diffuse, gloss, specular). Another pop-
ular 3D representation is the 3D point cloud that has the benefit to
be the direct output of acquisition devices.
To ease the development of new algorithms and stimulate research
around the processing of 3D mesh and point cloud, it is crucial
to have efficient open source tools and libraries available for the
scientific community. This need for dedicated libraries is empha-
sized by the fact that manipulating 3D data is far more complex
than manipulating 2D images. As an example, obtaining the direct
neighborhood of a pixel in an image is a trivial operation; how-
ever, computing neighbors of a 3D vertex in a 3D mesh (resp. point
cloud), with reasonable time complexity, requires a dedicated data
structure such as halfedge (resp. octree). In this context, we intro-
duce the MEPP2 platform†, a C++ software development kit and

† https://github.com/MEPP-team/MEPP2

GUI for processing and visualizing 3D surface meshes and point
clouds.
Several platforms exist for processing 3D meshes such as Meshlab
[CCC08] based on VCGlib‡, MEPP [LTD12], and libigl [JP∗18].
These platforms either use their own data structures or are based
on existing ones such as OpenMesh [BSBK02] or CGAL Poly-
hedron [The20]. For point clouds, a popular platform is Cloud-
Compare [Gir19], and available libraries include PCL [RC11] and
CGAL Point Set. The MEPP2 platform differs from these existing
tools in several ways:
It supports a wide range of 3D data: static and dynamic meshes
and point clouds, together with several types of attributes: vertex/
point colors and normals, different kinds of texture maps (including
physically-based maps). It is not limited to one single data structure
but integrates a wide range of them (for both mesh and point cloud
representation): OpenMesh, CGAL Surface Mesh, CGAL Polyhe-
dral Surface, CGAL Linear Cell Complex, AIF (Adjacency and In-
cidence Framework), PCL (Point Cloud Library), and CGAL Point
Set. It offers generic-programming abstraction layers, allowing to
invoke any data structure with the same source code. It offers an
application programming interface (API) for creating new process-

‡ https://github.com/cnr-isti-vclab/vcglib/

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

DOI: 10.2312/egs.20201010 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/egs.20201010


V. Vidal & E. Lombardi & M. Tola & F. Dupont & G. Lavoué / MEPP2

ing filters and a graphical user interface (GUI) to integrate filters as
plugins. It is developer-oriented and provides extensive documen-
tation and tutorials for creating filters and plugins.

The next section introduces the architecture of MEPP2. Section
3 provides source code examples, while currently available filters
are presented in Section 4. Section 5 details two applications.

2. Architecture

Figure 1 shows the architecture of the MEPP2 platform. The core
of the platform is the central layer: the FEVV template library
(FEVV holds for Face Edge Vertex Volume). It relies on a set of
concepts [GJS∗06], which provide an abstraction layer over sev-
eral third party mesh and point cloud data structures. Generic fil-
ters can then be created based on this template library. Structure-
specific filters can also be written. Filters can either be called using
a command-line interface or integrated into the graphical user in-
terface. All these elements and principles are detailed below.

Figure 1: Layers overview of the MEPP2 platform. Third-party
concept and data structures are represented in blue, while MEPP2
contributions are depicted in green.

2.1. Concepts

In C++, the development of a generic -highly reusable-, flexible
and efficient software library is done through the use of constrained
template parameters that are named concepts [GJS∗06]. This way
of programming is as powerful as inheritance with polymorphism
programming but more efficient in running time. In the source code
of a generic function, these constrained template parameters are
named with a concept type that explicitly refers to a set of require-
ments (valid expressions, associated types, etc.). A data structure
that implements all the concept’s prerequisites can then be used as
input of a generic function (for the corresponding parameter).
In the MEPP2 platform, Boost§ and CGAL libraries provide the

§ https://www.boost.org/

main concepts to process the topology of a surface mesh (Face-
Graph in Fig. 1). Boost defines the concepts needed to process a
graph (e.g. boost::Graph, boost::IncidenceGraph, etc.) and CGAL
defines concepts that refine the boost::IncidenceGraph concept to
process a graph that is also a polygonal 2-manifold surface. Be-
yond this use of the CGAL FaceGraph concept, MEPP2 supplies
new concepts for geometry, point cloud, and property maps (this
latter is extended from Boost). These concepts are detailed below.
Boost graph concept. It provides vertex and edge manipulation
features, such as vertex/edge descriptor, vertex/edge iterator and
some basic functions to iterate on vertices and edges of the graph.
CGAL HalfedgeGraph and FaceGraph concepts. They extend
the Boost graph concept with halfedge and face related features.
CGAL also offers circulators around a face or a vertex, which are
implemented using HalfedgeGraph concept.
FEVV geometry concept. This concept mainly provides a generic
way to create a point and to access its x, y, and z coordinates. It also
gives access to Point, Vector, Scalar, and Kernel associated types.
FEVV property map concept. The original need for "generic"
property maps arises from contexts where one needs to have the
warranty that storing/accessing a property map associated with
some mesh will function even if such a property map is not na-
tively supported by the specific mesh data structure. For example,
when using the native readers, the properties read from the mesh
file (like vertex color, vertex normal, face color...) are stored in-
side the data structure itself. But when using a generic reader, we
do not have anymore access to the data structure internal storage.
"Generic" property maps, based on boost property maps, provide
such a location for storing mesh properties independently from any
specific data structure. The FEVV property map concept also pro-
vides a property map container that is used to gather all the property
maps associated with the same mesh.
FEVV point cloud concept. The point cloud concept is intended
to manipulate point cloud objects generically. It reuses the nota-
tions of the Boost graph concept related to the vertices (for access,
addition, and removal) so that a simple algorithm iterating on ver-
tices can be written in a generic way for meshes and point clouds.
The point cloud concept also provides a k-nearest neighbor feature,
which is common in point cloud processing.

2.2. Adjacency and Incidence Framework (AIF)

MEPP2 provides an implementation of the Adjacency and Inci-
dence Framework (AIF) data structure [SG03] to represent and pro-
cess non-manifold surface meshes. AIF captures the incidence rela-
tionships between faces and edges, and between edges and vertices.
Our AIF implementation follows the boost::BidirectionalGraph
and CGAL::FaceGraph/CGAL::MutableFaceGraph concepts, but
does not fulfill the CGAL::HalfedgeListGraph since it does not
store halfedges. Topology helpers are provided to ease access and
modification of incidence relationships, to evaluate some topologi-
cal predicates onto vertices, edges, faces, and meshes such as man-
ifoldness, and to implement an HalfedgeGraph wrapper.

2.3. Graphical user interface (GUI), rendering and plugins

The platform provides a modular architecture through the use
of processing filters available as dynamic plugins (.dll for Win-
dows/.so for Linux/.dylib for Mac OS X) with plugins selection at

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

30



V. Vidal & E. Lombardi & M. Tola & F. Dupont & G. Lavoué / MEPP2

compilation time followed by their detection and automatic loading
at runtime. A plugin easily wraps a filter (a skeleton plugin with a
simple filter, is provided as a scaffolding within the platform). The
MEPP2 GUI (based on Qt4/Qt5 library) allows to handle multiple
objects (of different data structures) in one or more child windows
and offers two types of visualization: the Space mode in which sev-
eral objects are treated in the same viewer, and the Time mode in
which several objects are seen as a sequence and can be visualized
using a 3D+t video player. The platform offers an OpenGL accel-
erated rendering with Vertex Buffer Object (VBO) via the Open-
SceneGraph 3.6 library. Several shaders are implemented includ-
ing Blinn-Phong and Cook-Torrance with direct or indirect light-
ing. The platform supports PBR texture maps and face/vertex col-
ors (see Fig. 2).

Figure 2: Illustration of the MEPP2 graphical interface.

3. Sample code

This section illustrates examples of generic and structure-specific
source codes (C++11).

Structure-specific code example

typedef CGAL::Cartesian<double> K;

typedef CGAL::Surface_mesh<K::Point_3> SurfaceMesh;

void native_print_points(const SurfaceMesh &m)

{

auto vb = m.vertices().begin();

auto ve = m.vertices().end();

for(; vb != ve; ++vb) // loop over vertices

{

std::cout << m.point(*vb) << std::endl; // access geometry

}

}

The above code, that illustrates how to iterate on the vertices of a
mesh to print their coordinates, is specific to the CGAL Surface
Mesh data structure. Applying such a processing to another data
structure requires its rewriting.

Generic code example

template< typename VertexListGraph >

void generic_print_points(const VertexListGraph &g)

{

// create a geometry object to manipulate the geometry

FEVV::Geometry_traits< VertexListGraph > gt(g);

auto pm = get(boost::vertex_point, g); // retrieve Point map

auto vb = vertices(g).first;

auto ve = vertices(g).second;

for(; vb != ve; ++vb) // loop over vertices

{

auto p = get(pm, *vb); // access geometry

std::cout << gt.get_x(p) << ","

<< gt.get_y(p) << ","

<< gt.get_z(p) << std::endl;

}

}

The above code, based on the FEVV template library, is the generic
equivalent of the previous code. It works with all data structures
supported by MEPP2 (OpenMesh, CGAL’s structures, AIF, PCL).

4. Available filters and plugins

This section describes the filters currently available in the platform.
A filter is a program that either transforms or computes information
on meshes or point clouds. For each filter, we indicate if it is coded
in a generic, or structure-specific way and if it is integrated as a
plugin in the graphical user interface.
Generic reader and writer (Generic): these reader and writer can
load manifold and non-manifold mesh data structures (complex
edges are duplicated for manifold data structures), and can handle
common vertex/edge/face attributes via the FEVV property map
concept. Readable/writable mesh formats include OBJ, OFF, PLY,
and VTK. Readable/writable point cloud formats are OFF, PLY,
XYZ, and PCD.
Curvature computation (Generic; Plugin): the algorithm from
Cohen-Steiner and Morvan [CSM03] is implemented. Two ver-
sions are provided, the first considers a 1-ring neighbourhood
around each vertex and the second acts on a geodesic neighbour-
hood according to a given radius of integration. Each version out-
puts minimum and maximum curvature values and directions.
Boolean operations (Generic; Plugin): a fast Boolean operation
algorithm [LBD10] between 3D meshes is implemented; this algo-
rithm can compute the union, intersection, and difference between
two 3D meshes.
Perceptual quality metric (CGAL-specific; Plugin): the MSDM2
perceptual metric [Lav11] is implemented. Given a distorted 3D
shape and a reference one, it computes a quality score that predicts
the perceived distortion between them, as well as a per-vertex dis-
tortion map.
Just noticeable distortion model (Generic; Plugin): our platform
integrates the just noticeable distortion (JND) model recently pro-
posed by Nader et al. [NWFD16]. This perceptually-driven model
integrates mathematical models of contrast sensitivity function and
contrast masking. It was calibrated using an experimental study of
the properties of the human visual system. It can predict, for a given
illumination and screen resolution, whether a change in local con-
trast on a 3D mesh, induced by a local geometric distortion, is vis-
ible or not.
Progressive compression (Generic; Plugin): the progressive com-
pression algorithm from Lee et al. [LLD12] is implemented. This
algorithm can compress manifold 3D meshes (optionally with ver-
tex colors) with high compression ratio and in a way that allows
progressive decoding.

5. Applications

5.1. Comparing data structures

As an illustration of the usefulness of implementing algorithms
generically, we ran the progressive compression and decompres-

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

31



V. Vidal & E. Lombardi & M. Tola & F. Dupont & G. Lavoué / MEPP2

sion filters on several 3D meshes, using four different data struc-
tures: CGAL Polyhedral Surface, CGAL Surface Mesh, CGAL
Linear Cell Complex, and OpenMesh. The same generic code was
used with all data structures. We compared the computation times
and the memory footprints obtained for four meshes of growing
sizes from 9000 vertices to 550000 vertices. The results presented
in Figure 3 indicate that when considering the compression com-
putation time criterion, OpenMesh is the fastest data structure fol-
lowed by CGAL Surface Mesh which is 1.3 times slower. CGAL
Surface Mesh provides the smallest memory footprint. Detailed re-
sults are available in the supplementary material.

Figure 3: Comparison of data structures (timing in log scale and
memory in linear scale) for the compression of 4 different meshes.

5.2. Complex processing pipelines

MEPP2 facilitates the development of new geometry processing fil-
ters and applications. The code below illustrates a complex pro-
cessing pipeline using several data structures (the full source code
is available in the supplementary material). It loads a point cloud in
a PCL data structure, computes the point normals with PCL, then
reconstructs a mesh from the point cloud with CGAL, and finally
compresses the mesh with the progressive compression algorithm
from MEPP2.

// load point cloud with FEVV generic reader

FEVV::PCLPointCloud pc;

FEVV::PMapsContainer pmaps_bag; // FEVV bag of property maps

FEVV::Filters::read_mesh(input_file, pc, pmaps_bag);

// compute normals with PCL

[...]

pcl::search::KdTree<...>::Ptr kdtree(new pcl::search::KdTree<..>);

pcl::NormalEstimation<...> normal_estimator;

normal_estimator.setInputCloud(pc.makeShared());

normal_estimator.setSearchMethod(kdtree);

normal_estimator.setKSearch(18);

normal_estimator.compute(pc);

// copy PCL data structure into CGAL-compliant data structure

[...]

std::vector<...> points;

for(auto p : pc)

points.push_back(...(Point(p.x, p.y, p.z),

Vector(p.normal_x,p.normal_y,p.normal_z)));

// reconstruct mesh with CGAL (Poisson method)

[...]

CGAL::Polyhedron_3<...> reconstructed_mesh;

CGAL::poisson_surface_reconstruction_delaunay(

points.begin(), points.end(),

..., reconstructed_mesh, ...);

// compress mesh with FEVV Compression Valence filter

[...]

auto pm = get(boost::vertex_point, reconstructed_mesh);

FEVV::Filters::compression_valence(reconstructed_mesh,

&pm, ..., "cloud_to_mesh.compressed.p3d", ...);

6. Conclusion

In this paper, we presented the open-source MEPP2 platform,
which provides both an API for processing 3D meshes and point
clouds and a graphical user interface (GUI). The strength of the
platform is its core layer, the FEVV template library, that relies on
a set of concepts that provide an abstraction layer over several third
party mesh and point cloud data structures. We illustrated the bene-
fits of this architecture with several applications. As the abstraction
layers rely on templated and inlined functions that wrap data struc-
ture function calls, we expect to encounter only a small overhead.
Nevertheless, the use of associative property maps for non-indexed
data structures can lead to a performance loss. We plan to support
the volume mesh representation through the introduction of new
concepts. Our main objectives are to ease the processing of 3D data
(point cloud, surface, volume, their attributes) in an interoperable
way, and to federate a user community.

References
[BSBK02] BOTSCH M., STEINBERG S., BISCHOFF S., KOBBELT L.:

OpenMesh - a generic and efficient polygon mesh data structure.
OpenSG Symposium (2002). 1

[CCC08] CIGNONI P., CALLIERI M., CORSINI M.: Meshlab: an open-
source mesh processing tool. In Eurographics Italian Chapter Confer-
ence (2008). 1

[CSM03] COHEN-STEINER D., MORVAN J.: Restricted delaunay trian-
gulations and normal cycle. In 19th Annu. ACM Sympos. Comput. Geom.
(2003). 3

[Gir19] CloudCompare (version 2.10) [GPL software], 2019. Retrieved
from http://www.cloudcompare.org/. 1

[GJS∗06] GREGOR D., JÄRVI J., SIEK J., STROUSTRUP B., DOS REIS
G., LUMSDAINE A.: Concepts: Linguistic support for generic program-
ming in C++. In ACM SIGPLAN conference on Object-oriented pro-
gramming systems, languages, and applications (2006), pp. 291–310. 2

[JP∗18] JACOBSON A., PANOZZO D., ET AL.: libigl: A simple C++
geometry processing library, 2018. https://libigl.github.io/. 1

[Lav11] LAVOUÉ G.: A Multiscale Metric for 3D Mesh Visual Quality
Assessment. Computer Graphics Forum 30, 5 (2011), 1427–1437. 3

[LBD10] LECONTE C., BARKI H., DUPONT F.: Exact and Efficient
Booleans for Polyhedra. Tech. rep., 2010. URL: http://liris.
cnrs.fr/Documents/Liris-4883.pdf. 3

[LLD12] LEE H., LAVOUÉ G., DUPONT F.: Rate-distortion optimization
for progressive compression of 3D mesh with color attributes. The Visual
Computer 28, 2 (may 2012), 137–153. 3

[LTD12] LAVOUÉ G., TOLA M., DUPONT F.: MEPP - 3D Mesh Pro-
cessing Platform. In International Conference on Computer Graphics
Theory and Applications (GRAPP) (2012). 1

[NWFD16] NADER G., WANG K., FRANCK H., DUPONT F.: Just No-
ticeable Distortion Profile for Flat-Shaded 3D Mesh Surfaces. IEEE
Trans. on Visualization and Computer Graphics (2016). 3

[RC11] RUSU R. B., COUSINS S.: 3D is here: Point Cloud Library
(PCL). In IEEE International Conference on Robotics and Automation
(2011). 1

[SG03] SILVA F., GOMES A.: Adjacency and incidence framework -
A data structure for efficient and fast management of multiresolution
meshes. In GRAPHITE (2003), pp. 159–166. 2

[The20] THE CGAL PROJECT: CGAL User and Reference Manual,
5.0.1 ed. CGAL Editorial Board, 2020. URL: https://doc.cgal.
org/5.0.1/Manual/packages.html. 1

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

32

http://liris.cnrs.fr/Documents/Liris-4883.pdf
http://liris.cnrs.fr/Documents/Liris-4883.pdf
https://doc.cgal.org/5.0.1/Manual/packages.html
https://doc.cgal.org/5.0.1/Manual/packages.html

