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Figure 1: Left: schematic of our 360° inward-looking light field capturing system that consists of a precision guided rotating arm with
multiple cameras. Right: a few samples of the synthesized light field images from different data sets and their corresponding depth maps.

Abstract
Photorealistic rendering is an essential tool for immersive virtual reality. In this regard, the data structure of choice is typically
light fields since they contain multidimensional information about the captured environment that can provide motion parallax
and view-dependent information such as highlights. There are various ways to acquire light fields depending on the nature of
the scene, limitations on the capturing setup, and the application at hand. Our focus in this paper is on full-parallax imaging
of large-scale static objects for photorealistic real-time rendering. To this end, we introduce and simulate a new design for
capturing inward-looking spherical light fields, and propose a system for efficient compression and real-time rendering of such
data using consumer-level hardware suitable for virtual reality applications.

CCS Concepts
• Computer graphics → Image-based rendering; Computational photography; Image compression;

1. Introduction

Producing high-quality content for Virtual Reality (VR) applica-
tions is a challenging task. The human visual system is highly ca-
pable of distinguishing real content from virtual ones. Visual dis-
crepancies and delays in rendering create uncomfortable symptoms
such as headaches, dizziness, and fatigue. In recent years, light
field imaging has been very successful in capturing high dimen-
sional data from real environments with complex geometry, light-
ing, shadows, and reflectance at low cost and high quality. In light
field imaging, all rays from different directions and locations are
recorded, creating a stereoscopic parallax leading to a realistic ex-
perience in various applications such as virtual museums, product
visualization, visual effect industry, and computer games.

In this paper, we present a design, using simulation, for a captur-
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ing system to acquire a full inward-looking spherical light field of
a scene providing 6-DoF viewing. We have employed a learning-
based compression technique [MHU19, HML∗19] for encoding
light field data sets that, besides providing a real-time rendering of
large amount of data, has shown to be very efficient in maintaining
the visual quality. The light-weight reconstruction algorithm allows
for high frame rates suitable for various VR applications.

2. Related Works

Light field capturing and rendering was first introduced as a sys-
tem comprising of multiple cameras capturing a scene from various
vantage points in order to render the aforementioned scene with or
without geometry information [LH96, GGSC96]. Light fields are
high-dimensional data that can be parametrized in various ways.
For instance, considering a 2-plane parameterization, a light field is
a 5-dimensional (5D) function L(x,y,θ,φ,c), representing the spa-
tial domain (x,y), the angular domain (θ,φ), and the spectral do-
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Figure 2: Our proposed pipeline for acquisition, compression and real-time rendering of spherical light fields.

main c. Given the large memory footprint of light fields, capturing
and storage of such data pose various challenges.

Capturing There exists many approaches for capturing light
fields, from camera arrays [WJV∗] to gantry light fields [LH96,
GGSC96, KZP∗13]. For capturing high-quality light fields, a large
number of cameras are required, which is very costly and bulky,
with excessive bandwidth requirements. Hand-held hight field cam-
eras [NLB∗05, Ray19] were designed to capture dense light field
with micro-baseline by trading spatial resolution for angular reso-
lution. Furthermore, due to their small disparity between neighbor-
ing views, it is not suitable for VR applications. To capture 360°
of the environment, Overbeck et al. [OEE∗18] introduce a system
for capturing outward-looking light fields of the environment. Re-
cently, Mildenhall et al. [MSOC∗19] proposed a user-guided cap-
turing system for inward-looking light fields, but it has limitations
on capturing light fields with high spatial resolution.

Compression There are various methods for compression of light
fields like analytical basis functions such as discrete cosine trans-
form used in JPEG or wavelets and Fourier bases. Unsupervised
learning methods such as KSVD [AEB06], on the other hand, de-
rive dictionary models directly from the data set. Miandji et al.
[MHU19] have proposed a novel learning-based method suitable
for high dimensional data that provides a high compression ratio
compared to the previous work, as well as supporting fast GPU-
based encoding [BMU19].

Contributions In this paper, we propose a capturing design that
solves the problem of multi-camera systems for capturing a 360°
inward-looking light field data set using only a few cameras. Fur-
thermore, we employ the aggregated multidimensional dictionary
ensemble (AMDE) algorithm similar to Miandji et al. [MHU19] for
training a multidimensional dictionary to encode the acquired light
field data. We further compress the data by quantizing the sparse
coefficients obtained from AMDE using a clustering algorithm, fol-
lowed by the entropy coding of the quantized values.

3. Capturing System

The capturing setup consists of multiple cameras mounted equidis-
tantly on a circular arm, looking inward and rotating around an axis,
as shown in Figure 1. The cameras can be placed in any desirable
configuration to cover the full outgoing radiance of the scene, either
densely with a smaller field of view or placed sparsely with a larger
field of view. In our experimental simulations, thirteen cameras are
used to cover the hemisphere centered at the object to reduce the
baseline between the cameras. By rotating the arm around the ob-
ject, in a controlled manner, the light field of the scene is captured.
In this paper, we set the rotation angle to 1°, meaning that the angu-
lar resolution of the data set is 13× 360°. This results in hundreds
of Gigabytes of data, which will, later on, be compressed using a

learning-based compression algorithm in order to utilize the highly
insufficient GPU memory for real-time rendering.

3.1. Index Mapping

To find the nearest cameras in real-time reconstruction, an index
map is created by sampling the azimuth θ and elevation φ directions
from the calibration data. Extrinsic camera matrices are used to
estimate the center of the capturing device by fitting a sphere to
the camera positions. For each sample on the sphere, four nearest
camera indices are stored in an index map for fast access to the data
during the real-time rendering.

3.2. Sparse Approximation

Displaying the light field data set in real-time requires an efficient
compression algorithm with random access to the data set such that
only a small portion of the light field is reconstructed (i.e. decoded)
at a given time. In this paper, we use an unsupervised learning algo-
rithm to train an Aggregate Multidimensional Dictionary Ensemble
(AMDE) [MHU19] for sparse representation of the light field data
set. A single dictionary in AMDE consists of multiple orthonormal
matrices (one for each data dimension). For efficient sparse rep-
resentation, multiple dictionaries are trained in practice. Once an
AMDE is constructed given a training set, it can be used to repre-
sent any light field data set with reasonably similar image statis-
tics as the training set. Advantages of AMDE include the small
memory footprint for the dictionaries, as well as producing highly
sparse representations; together, these properties lead to a signifi-
cant compression ratio in the orders of 100:1 or more depending on
the structure of the input data, as shown in Section 5.

3.2.1. Training

AMDEs are constructed by training a set of dictionaries on a train-
ing set that consist of Nl small patches (or data points), denoted
{L(i)}Nl

i=1, extracted from a set of light fields. The testing set, i.e.
the light field data set that we intend to compress, is denoted by
{T (i)}Nt

i=1 with Nt data points. A data point in this context refers to
as a small patch that spans all dimensions of the light field. Since
the light field data set acquired with our proposed design is very
sparse in the elevation angle, the elevation angle is not included in
the data point due to the lack of coherence between neighboring
angles. Hence, the light field is compressed for each azimuthal ring
independently. With a slight abuse of notation, we denote the size
of each data point as x×y×θ×c, where (x×y) is the resolution of
the data point in the spatial domain, θ is the azimuthal resolution,
and c is the number of color channels. Moreover, we assume that
a reasonably accurate depth information is available. We include
the depth information in the last dimension; i.e. c = 4, where the
dimensions are R, G, B, and D, where D is the depth.
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As the first step, a pre-clustering algorithm is used on the data
points to group them based on their sparsity and reconstruction
error into C pre-clusters. This step is necessary to reduce the
effect of noise in the data set and training time while improv-
ing the sparsity of the representation [HML∗19]. For each pre-
cluster, a Multidimensional Dictionary Ensemble (MDE) is trained,
{U(1,k), . . . ,U(4,k)}K

k=1, where K is the number of dictionaries.
Each data point can then be represented as:

L(i) = S(i)×1 U(1,k) · · ·×4 U(4,k) = S(i)
4

×
j=1

U( j,k), (1)

where S(i) is a tensor of sparse coefficients and
∥∥∥S(i,k)∥∥∥

0
≤ τl ,

where τl is a user-defined sparsity parameter for training. To train
each MDE satisfying (1), we solve the following optimization prob-
lem

min
U( j,k),S(i,k),Mi,k

Nl

∑
i=1

K

∑
k=1

Mi,k

∥∥∥∥∥L(i)−S(i,k) 4

×
j=1

U( j,k)

∥∥∥∥∥
2

F

, (2)

where, M ∈ RNl×K is a clustering matrix associating each data
point to a dictionary in the ensemble. The trained MDEs for all
the C pre-clusters are aggregated to form the AMDE:

Ψ =
C⋃

i=1

{
U(1,k,i), . . . ,U(4,k,i)

}K

k=1
=
{

U(1,k), . . . ,U(4,k)
}CK

k=1
(3)

3.2.2. Encoding

To encode the light field data set, each data point {T (i)}Nt
i=1, is pro-

jected onto all dictionaries of AMDE as follows

S(i,k) = T (i)
4

×
j=1

(
U( j,k)

)T
, ∀k ∈ {1, . . . ,CK}. (4)

Smallest elements of S(i,k) are nullified until a threshold for repre-
sentation error is achieved. Additionally, for data points that are not
sparse, a sparsity upper-bound is used to ensure sparsity, for more
details see [MHU19]. Finally, once the ith data point, T (i), is pro-
jected onto all dictionaries in AMDE, the index of the dictionary
that produces the most sparse coefficients and the least reconstruc-
tion error is stored as the membership index mi, where m ∈ RNt .

The light field coefficients that are obtained from (4) can be fur-
ther compressed by quantization and entropy coding. Initially, the
nonzero elements of the sparse tensor S(i,k) are quantized using
Fisher-Jenks classification algorithm [Fis58] which classifies fea-
tures of a 1D vector using natural breaks in data values by minimiz-
ing sum of the squares of the deviations from the class means. The
number of cluster centroids is user-defined. Note that for the sparse
tensor, we need to store the location of the nonzero coefficients
too. The quantized nonzero coefficients (8-bits per coefficient), to-
gether with their corresponding locations (32-bits per location, i.e.
8-bits per dimension), are then encoded by the Huffman algorithm.
The entropy coded coefficients together with Huffman dictionary
are stored on the disk and decoded once the data is loaded to the
memory.

Reference AMDE Error AMDE+Quant. Error

Figure 3: Quantization of sparse coefficient and its effect on the
reconstruction quality for the TOY data set.

4. Real-time Reconstruction

One of the key features of AMDE is random local access to
each element of the Light field data set. As a result, for a given
viewpoint, a single pixel can be reconstructed using a light-
weight, GPU-friendly algorithm. The sparse coefficients of all ac-
quired views, S(i), together with their corresponding dictionaries,
{U(1,1), . . . ,U(4,CK)} and their membership matrix M are uploaded
to the GPU as textures where each element of a data point T (i), de-
noted T (i)

x1,x2,x3,x4 , is reconstructed in a shader program as a simple
multiplication:

T (i)
x1,x2,x3,x4 =

τi

∑
j=1
S(i)

l j
1 ,l

j
2 ,l

j
3 ,l

j
4
U(1,mi)

x1,l
j
1

U(2,mi)

x2,l
j
2

U(3,mi)

x3,l
j
3

U(4,mi)

x4,l
j
4

, (5)

where τi is the number of nonzero elements in S(i) and (l j
1, l

j
2, l

j
3, l

j
4)

is the corresponding locations for nonzero elements.

The index map and calibration data are also uploaded to the
GPU. A proxy geometry, e.g. a quad, is placed at the center of the
bounding sphere of the sampled viewpoints to assist the rendering.
During rendering, from the virtual camera position, we calculate
a ray-sphere intersection to find the closest intersection point with
the bounding sphere of the cameras. The intersection point is con-
verted to spherical coordinate to look up the closest four cameras in
the index map as explained in Section 3.1. Each point on the proxy
geometry is projected onto each of the four closest cameras, and
then projected back to the 3D world using the depth map of each
view that is reconstructed in real-time using Equation (5). Subse-
quently, the final pixel is reconstructed by interpolation between
the four points obtained from the four closest cameras.

5. Experiments

To test our proposed framework, we simulated the capturing design
shown in Figure 1 using Maya and Mental Ray, as explained in Sec-
tion 3. The calibration and depth maps are generated through the
simulation process. The compressed data, together with its dictio-
naries and corresponding indices, are loaded and transformed into
a suitable format to fit on OpenGL textures. As the light field is
compressed separately for each ring, we have 13 compressed files
corresponding to 13 cameras. The data points for this experiment
have a fixed size of 12×16×6×4 corresponding to x× y×θ× c.
We created diverse data sets with different material properties from
diffuse to specular and translucent. Table 1 shows the result of our
compression for data sets: POT, STOOL, VASE, TOY, and LAMP.
The compression ratio using only the AMDE method varies be-
tween 1022:1 for the POT with the image resolution of 4000×3000
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Dataset POT STOOL VASE LAMP TOY
Resolution 4000×3000 800×600 800×600 800×600 800×600

AMDE
Comp. Ratio 1022:1 58:1 129:1 59:1 148:1
PSNR 53.11dB 39.72dB 47.23dB 35.57dB 44.71dB

AMDE + Quant. Comp. Ratio 3054:1 130:1 294:1 128:1 329:1
+ Huffman PSNR 52.41dB 39.18dB 45.96dB 35.32dB 44.15dB

Table 1: The comparison of AMDE results with and without quantization and entropy coding of the sparse coefficients using the Huffman
coding. The data sets include depth information.
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Figure 4: Reconstruction quality after after applying AMDE and
sparse coefficient compression of LAMP, TOY, and VASE data sets.

to 58:1 for STOOL data set with a resolution of 800×600, showing
that the compression efficiency is dependent on the content of the
scene and image resolution. The upper-bound for the number of the
coefficients is fixed to 128 for all scenes. The real-time reconstruc-
tion achieves 180 frame per second using a GeForce GTX 1080
Ti graphics card, see the supplementary video. Figure 4 illustrates
the reconstruction of the compressed light fields with depth map
for LAMP, TOY and VASE data sets. The reconstruction error, as
shown in this figure, is insignificant, which shows the effectiveness
of the reconstruction algorithm. The effect of Huffman coding and
Fisher-Jenks clustering of sparse coefficients with 128 cluster cen-
ters is shown quantitatively in Table1 and visually for the TOY data
set in Figure3. As Table 1 shows the entropy coding improves the
compression ratio by a factor of 3 while preserving the reconstruc-
tion quality for most of the scenes. The average source entropy is
H = 4.01. By exploiting the sparse structure of S(i,k) we achieved
an entropy of E = 4.06, which is close to the source.

6. Conclusion and Future Work

We presented a complete system from capturing to the rendering of
360° inward-looking spherical light fields. The presented compres-
sion technique enables random access to memory, which is suitable
for real-time rendering of high-resolution data sets. We proposed a
design for capturing high-quality light field data sets in a controlled
environment. In the under-sampled regions along the elevation, we

used a depth-based view synthesis to enhance the resolution. Our
quantization and entropy coding of the sparse coefficients improved
the compression ratio. The combination of high compression ratio
and high-quality real-time reconstruction makes our system suit-
able for displaying light fields in HMDs or light field displays.
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