
EUROGRAPHICS 2020/ F. Banterle and A. Wilkie Short Paper

Accelerated Foveated Rendering based on Adaptive Tessellation

A. Tiwary1, M. Ramanathan1, and J. Kosinka2

1Department of Engineering Design, Indian Institute of Technology Madras, India
2Bernoulli Institute, University of Groningen, Netherlands

Abstract
We propose an optimization method for adaptive geometric tessellation, involving the saccadic motion of the human eye and
foveated rendering. Increased demands on computational resources, especially in the field of head-mounted devices with gaze
contingency make optimization schemes pertinent for a seamless user experience. For implementing foveated rendering, our
algorithm tessellates a 3D model in real-time based on the location of the user’s gaze, substituted with a mouse cursor in this
project as a proof of concept. Saccades and fixations of the human eye are simulated by delaying the process of tessellation and
rendering by the minimum time taken to complete a saccade. Calculations required for tessellation and rendering the changes
on the screen are stalled as and when the eye fixates after a saccade. The paper walks through our contribution by describing
the theory, the application method, and results from our user study evaluating our method.

CCS Concepts
• Computing methodologies → Rendering; Mesh geometry models; Graphics systems and interfaces; • Human-centered
computing → Virtual reality;

1. Introduction

Evolved over millennia, the Human Visual System (HVS) is apt for
viewing the world as we know it. Computers and display devices
have seen an upsurge in sophistication and the quality of graphics
ever since their conception. With limited processing power avail-
able, more performance requires optimization techniques. Foveated
rendering is one such scheme, adapted from nature.

Foveated rendering is a technique that leverages the rapidly de-
clining perceived quality of human vision towards the periphery in
order to speed up 3D rendering [PSK∗16]. Differential allocation of
resources occurs across the display, with the image quality degrad-
ing on moving away from the gaze location. As the HVS tends to
ignore the finer details towards the periphery, the user does not re-
alize the degraded resolution. The optimization can be introduced
at different stages in the rendering pipeline. Our work varies the
amount of smooth tessellation done to the 3D mesh of a geometric
model to get a finer output locally.

The human eye performs various distinct movements. Saccades
are rapid eye movements designed to shift the fovea to objects
of visual interest [TTRF15]. A reduction of visual sensitivity oc-
curs around the time of saccades, to maintain perceptual stabil-
ity [BKHK09]. Algorithms manipulating and exploiting saccadic
suppression for optimization are topical areas of research. Here,
we discuss its adaptation into geometric tessellation with foveated
rendering; see Figure 1.

An immediate benefit from this work is realised in com-

(a) (b)

Figure 1: Output of hardware tessellation. (a) A wireframe model
(based on QAS applied to the Blender Suzanne model) with the cur-
sor placed on the ear of the model, showing adaptive tessellation
in action. (b) The viewer sees the 3D model smoothly shaded.

putationally expensive applications such as head-mounted vir-
tual/augmented reality (VR/AR) devices with gaze contingency.
The proof of concept has been provided by an application specifi-
cally created for the purpose. The tessellation method followed by
this application is Quadratic Approximation of Subdivision Sur-
faces (QAS) [BS07], but the concept can be extended to all surface
schemes based on geometric patches, such as [LSNCn09]. A con-
trolled user study gave us insights into the potential of our method.

This paper is divided into five parts. After this introduction, Sec-
tion 2 introduces the involved concepts. Section 3 details the im-
plementation procedure. The experimental procedure and the cor-
responding results are covered in Section 4. Finally, Section 5 sum-
marises the results and proposes future work.

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

DOI: 10.2312/egs.20201003 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/egs.20201003

A. Tiwary, M. Ramanathan, and J. Kosinka / Accelerated Foveated Rendering based on Adaptive Tessellation

2. Related Work and Background

We start by briefly recalling related work and relevant concepts.

2.1. Previous Work

Foveated rendering by manipulating peripheral contrast and shad-
ing coarseness was covered in [PSK∗16]. [Lin16] describes an im-
plementation of adaptive tessellation on a 3D object using hard-
ware resources, and then applies blur to simulate depth percep-
tion. [KSL∗19] describe a novel neural reconstruction for images
after a stochastic dropping of peripheral pixels from a sparse in-
put video stream. A foveated rendering algorithm by varying the
refresh rate of sections of the display was devised in [GFD∗12].
The screen was divided into discrete layers (2 or 3 as per need) of
sampling rates arranged in concentric circles about the gaze loca-
tion. The inner circle had the highest sampling rate, which dropped
in the outer layers. An improvement in the average performance
by a factor of 6 was observed. [SIGK∗16] evaluated several pos-
sible ways of implementing foveated rendering, using metrics re-
quired for various designing aspects, such as the foveal window
size and peripheral resolution. Adaptive tessellation is one of the
four methods evaluated. Subdivision and tessellation are very pop-
ular methods for smoothing a carefully designed coarse mesh into a
high-resolution smooth version using a set of local rules, typically
on the GPU [BS07, LSNCn09]. Apart from QAS, other tessella-
tion schemes can also be followed, with minor modifications. The
principle, as described in Section 3, however, remains the same.

2.2. Foveated Rendering

The human eye has photo-receptors called cones and rods. The
density of cones near the center of the eye is much higher than
the density near the periphery. The fovea centralis is the region
with the highest cone concentration. The result is a small viewing
cone where the sensitivity is maximal, with progressive degrada-
tion along either axis; see [WB01, Figure 2]. This is exactly what
foveated rendering takes advantage of.

2.3. Saccades and Fixations

Saccades are rapid eye movements which align the fovea with
the region of interest for the best resolution of spatial de-
tails [ATM∗17]. Saccadic suppression is the phenomenon where
the sensory information is significantly reduced. This gives a
person a stable depiction of the surroundings during a saccade
[BKHK09]. A saccade generally lasts from anywhere between 20
to 200 milliseconds (ms) [ATM∗17], with a few tens of millisec-
onds going into restoring complete sensitivity. The fastest time
taken for an entire saccade and fixation to happen is 20ms and
100ms, respectively [PHR∗08]. For foveated rendering, calcula-
tions for tessellation occur at the screen refresh rate, regardless of
whether the cursor is held still or is in motion.

Our solution is to efficiently use (re)calculations only where
(foveated rendering) and when (saccades) needed. For a display
working at 120Hz, each update occurs once every 8.33ms. Our pro-
posed solution only performs the calculations when the cursor is in
motion and once every 20 milliseconds, reducing the number of

calculations by a minimum of 14 times. The performance increase
is even higher for displays with higher frame rates.

3. Method and Implementation

Our method has been developed in C++ with Qt for control and
OpenGL (with tessellation shaders) for rendering. This section
defines the step-by-step methodology followed to implement
a saccade and fixation based tool for foveated rendering, the
underlying concepts of which were discussed in Section 2.
• Identifying the gaze location of the user is the primary task
(the cursor location in our implementation). The coordinates of
the cursor location are transformed from the view-port space
coordinates to normalized device coordinates. Scaling is then
applied to transform the coordinates to the four dimensional
homogeneous clip space. The coordinates are then ‘unprojected’
to the camera space coordinates by multiplying the 4-dimensional
vector with the inverse of the projection matrix.
• In the camera space, a ray is cast from the camera to the cursor
location, and it is normalized to obtain the unit vector in its
direction (the z-coordinate is on either the near or far clip plane).
This ray is passed to the tessellation control shader.
• The perpendicular distance of each (transformed) vertex from the
ray is measured. Tessellation levels for each edge of the triangular
QAS patch are assigned based on the inverse of the ray-vertex
distance, multiplied with a suitable scaling factor. The scaling
factor is adjusted to allow the region of high resolution to be
greater than the foveal cones base. We optimised this parameter
through user experiments.
• Once the cursor is in motion, we store its position from the
current and previous frame. The time taken for performing the
operations in each iteration is stored. The speed of the cursor is
calculated by dividing the length between the old and new cursor
location by the time taken. Predicting the location at which the next
possible fixation will occur is done by multiplying the cursor speed
with the unit vector in this direction and then with the minimum
time required for a saccade.
• The set of calculations in our setting refers to: finding the
possible fixation location; creating a ray through a given cursor
location and transforming it from the viewport space to the camera
space; and performing subdivision in the tessellation shader for
each polygon (triangle in the QAS case). This set of calculations
is performed once and the function is not called for the next
20ms. During this time the only update that occurs is the predicted
location of next fixation.
• If the cursor keeps moving after 20ms, the process is repeated. In
case a fixation occurs, no calculations are done till the next saccade
is initiated. In case a fixation occurs in-between the 20ms steps, the
scaling factor ensures that the error in gaze location prediction is
imperceptible. Future work can vary the scaling factor dynamically
based on parameters such as cursor velocity or user distance from
the screen.

4. User Study

A study with 15 participants was performed to evaluate the pro-
posed method. A successful method and implementation has been
achieved when the participants are not able to distinguish between

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

2

A. Tiwary, M. Ramanathan, and J. Kosinka / Accelerated Foveated Rendering based on Adaptive Tessellation

(a) (b)

(c)

(d) (e)

(f)

Figure 2: (a) A normally tessellated 3D model with approx. 100K triangles. (b) A normally tessellated 3D model with approx. 1M triangles.
(c) A foveated model with varying tessellation density. The blue box refers to the gaze point. All three images show wireframe models for
clarity. On the right, (d–f) show insets of the three versions (a–c), respectively. Observe the adaptive nature of tessellation in (f).

(a) (b)

Figure 3: A still from the video with regular (uniform) tessellation
(a) and a still with the saccade fixation implementation (b).

regular tessellation and our adaptive algorithm. As the absence of
a gaze tracker is clearly a major concern for the evaluation of our
cursor-based implementation, the experiment was designed around
this limitation. A viewing square of appropriate size was created.
The user was asked to confine their visual attention within this
viewing box, which moved across the display screen with the cur-
sor. Each participant was first prepared for the task of tracking the
viewing box. A video with dots appearing at random was used for
this purpose. The user was required to direct their gaze to each
new dot on the screen as it appeared. This exercise was repeated
until the user was comfortable with tracking dots effortlessly, i.e.,
without considerable diversion of attention. In order to facilitate
the study and enable the participants to easily answer the questions
which were to follow, the effect of tessellating a surface was ex-
plained. The difference between a coarse and finely tessellated 3D
model was consequently shown to the user.

A set of three videos was prepared for the main evaluation (see
supplementary material). The first video had the viewing box mov-
ing on the screen with a model which had been tessellated to a

million polygons (illustrated in Figure 2(b, e)). No changes actu-
ally occurred during the run-time of this video; this acted as our
baseline. The second video had the foveated rendering algorithm
running in the background. The saccades and fixations acceleration
was employed in the third video. The responses for the first video
were used to relatively evaluate the performance of the rest.
The viewing box performed two different motions. The first mo-
tion was a continuous clockwise movement around the model. The
second movement made the viewing box appear and disappear at
certain intervals of time on the same trajectory. This simulated a
possible path a human eye might use to view the object. The sub-
jects went through three iterations of each video in a randomised
order to prevent bias and maintain consistency. Responses to the
questions asked were recorded. Static images (illustrated in Fig-
ure 3) were shown afterwards. On these, the participants reported
similarity between the two viewing box modes on a scale of 1 to 10,
with 1 meaning uniquely distinct and 10 meaning no difference.
The viewing box can be a cause for distraction. Paintings, pho-
tographs and most displays on various devices around us are gen-
erally rectangular. A square box of side length two centimeters
was thus chosen for the task, as it should be more convenient to
‘look into’. The participants were seated comfortably with the dis-
play and chair oriented ergonomically. The screen was placed 60cm
from the participant’s eyes, with an error margin of 5cm. At this dis-
tance, the sharpest field of vision corresponds to a span of 1.33cm
on the display surface. Errors due to shifting of gaze from the centre
of the viewing box and those due to micro-saccades were consid-
ered, resulting in the given final form of the viewing box. A back-
lit LED display with a resolution of 1980x1080 at a refresh rate of
60Hz was used for the experiments.

The amount of tessellation was measured in terms of the number
of generated triangles. For example, when a coarse model with a
few hundred polygons was converted to one with a million poly-

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

3

A. Tiwary, M. Ramanathan, and J. Kosinka / Accelerated Foveated Rendering based on Adaptive Tessellation

gons, the density of the latter has been used as a reference scale for
comparison. For the videos, the distribution of mesh density was
adjusted so that there existed a million polygon model density at
the gaze location. The density at the periphery had the equivalent
of a 20K-triangle model. The distribution of tessellation was con-
trolled to limit the maximum number of triangles to be less than
8 times a fully tessellated model. The number of calculations thus
reduces by a minimum of the same factor. Therefore, theoretically
there was at least a 112 times reduction in the number of calcula-
tions compared to a standard tessellation method.
Participants selected for the experiment had no prior knowledge of
foveated rendering. For both motions of the viewing box across the
screen, no inadequacies in tracking ability were reported. Tables 1
and 2 report the results of the tests.

Table 1: Results for each iteration per motion and video. The re-
ported values signify the number of successful trials where no vi-
sual distractions were reported.

Motion Video 1 Video 2 Video 3
Iteration I II III I II III I II III
First 14 14 15 14 15 15 15 15 15
Second 13 15 15 14 15 15 14 15 15

Table 2: Means and modes of the values reported by participants
regarding the similarity inside the viewing boxes (scale 1 to 10).

Average Value Video 1 Video 2 Video 3
Mean 8.26 4.13 3.73
Mode 8 3 4

It was observed that the majority of users did not spot any
discerning occurrence on the screen. The few discrepancies were
recorded during the first few trials for a few users, which can be
attributed to the experimentation method, rather than the algorithm
itself. This is substantiated by the fact that the issues occurred more
in the first (baseline) video, where we know no changes occurred
in the model. When asked to compare the image quality between
the two boxes (illustrated in Figure 3), all participants reported a
sharp difference between the image quality for the proposed al-
gorithms, and minimal difference for the regular tessellation case,
as expected. Participants were then asked to observe the actual
changes that occur on the screen as the algorithms functioned by
pointing them out. None of the subjects reported having observed
any such change during the experiment.

5. Conclusion

We have observed that users were not able to distinguish between
the functioning of the foveated rendering algorithms and regular
tessellation. Unwanted artifacts and visual distractions were re-
ported in around 2.5% of the total cases. Statistically, around 6%
of the trials showed some visual pops during the first set of trials,
which went down to 1% by the second set of trials. No pops of
any kind were reported during the final set of trials. The algorithm
can theoretically give a much better performance gain, judging by
the number of calculations at every update, if used on larger scenes

with more models/polygons, and on devices with an even higher
frame rate.

We are now implementing this algorithm using an eye tracker as
a natural continuation. New problems arise in that case, primarily
due to latency, hardware dynamics and accuracy. Fusion with other
adaptive tessellation schemes, such as those based on the proximity
and orientation of the model to the camera in the scene, the curva-
ture of model sections, are being explored. Better prediction models
for fixations sites and the incorporation of other eye movements is
required to build a robust foveated rendering algorithm.

Acknowledgements

Our implementation builds on the QAS implementation by Jens
van der Meer and Tim Oosterhuis, which in turn builds on an
OpenGL/Qt framework provided by Pieter Barendrecht. This re-
search is based on the first author’s internship at the University of
Groningen.

References
[ATM∗17] ARABADZHIYSKA E., TURSUN O. T., MYSZKOWSKI K.,

SEIDEL H.-P., DIDYK P.: Saccade landing position prediction for gaze-
contingent rendering. ACM ToG 36, 4 (2017). 2

[BKHK09] BREMMER F., KUBISCHIK M., HOFFMANN K.-P.,
KREKELBERG B.: Neural dynamics of saccadic suppression. Journal
of Neuroscience 29, 40 (2009), 12374–12383. 1, 2

[BS07] BOUBEKEUR T., SCHLICK C.: QAS: Real-time quadratic ap-
proximation of subdivision surfaces. In Proceedings of the 15th Pacific
Conference on Computer Graphics and Applications (2007), PG ’07,
IEEE Computer Society, pp. 453–456. 1, 2

[GFD∗12] GUENTER B., FINCH M., DRUCKER S., TAN D., SNYDER
J.: Foveated 3d graphics. ACM ToG 31, 6 (Nov. 2012), 164:1–164:10. 2

[KSL∗19] KAPLANYAN A. S., SOCHENOV A., LEIMKÜHLER T.,
OKUNEV M., GOODALL T., RUFO G.: Deepfovea: Neural reconstruc-
tion for foveated rendering and video compression using learned statis-
tics of natural videos. ACM Trans. Graph. 38, 6 (Nov. 2019). 2

[Lin16] LINDEBERG T.: Concealing rendering simplifications using
gazecontingent depth of field. Master’s thesis, KTH, School of Com-
puter Science and Communication (CSC), 2016. 2

[LSNCn09] LOOP C., SCHAEFER S., NI T., CASTAÑO I.: Approximat-
ing subdivision surfaces with Gregory patches for hardware tessellation.
ACM ToG 28, 5 (Dec. 2009), 151:1–151:9. 1, 2

[PHR∗08] PANNASCH S., HELMERT J. R., ROTH K., HERBOLD A.-K.,
WALTER H.: Visual fixation durations and saccade amplitudes: Shifting
relationship in a variety of conditions. Journal of Eye Movement Re-
search 2, 2 (Dec. 2008). 2

[PSK∗16] PATNEY A., SALVI M., KIM J., KAPLANYAN A., WYMAN
C., BENTY N., LUEBKE D., LEFOHN A.: Towards foveated rendering
for gaze-tracked virtual reality. ACM Trans. Graph. 35, 6 (Nov. 2016).
1, 2

[SIGK∗16] SWAFFORD N. T., IGLESIAS-GUITIAN J. A., KONIARIS C.,
MOON B., COSKER D., MITCHELL K.: User, metric, and computa-
tional evaluation of foveated rendering methods. In Proceedings of the
ACM Symposium on Applied Perception (New York, NY, USA, 2016),
SAP ’16, ACM, pp. 7–14. 2

[TTRF15] TERMSARASAB P., THAMMONGKOLCHAI T., RUCKER
J. C., FRUCHT S. J.: The diagnostic value of saccades in movement
disorder patients: a practical guide and review. Journal of Clinical Move-
ment Disorders 2, 1 (Oct 2015), 14. 1

[WB01] WANG Z., BOVIK A. C.: Embedded foveation image coding.
IEEE Transactions on Image Processing 10, 10 (2001), 1397. 2

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

4

