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Abstract
Additive manufacturing technologies fabricate objects layer by layer, adding material on top of already solidified layers. A
key challenge is to ensure that there is always material below, for otherwise added material simply falls under the effect of
gravity. This is a critical issue with most technologies, and with fused filament in particular. In this work we investigate how
to compute as large as possible empty cavities which boundaries are self-supporting. Our technique is based on an iterated
carving algorithm, that is fast to compute and produces nested sets of inner walls. The walls have exactly the minimal printable
thickness of the manufacturing process everywhere. Remarkably, our technique is out-of-core, sweeping through the model from
the top down. Using our approach, we can print large objects using as little as a single filament thickness for the boundary,
providing one order of magnitude reduction in print time and material use while guaranteeing printability.

CCS Concepts
•Computing methodologies → Shape modeling; •Applied computing → Computer-aided design;

1. Introduction

Additive manufacturing processes fabricate objects layerwise, from
the bottom up, bonding each layer to the one below to form the final
shape. This is a slow process and performance scales poorly since
the volume grows to the cube of the object extent.

Several techniques have been proposed to reduce the time taken
by the process, in particular by emptying the interior of the ob-
ject (i.e., by hollowing its erosion). However, the tops of the cavity
cannot be printed directly as they are not supported from below.
Thus, most software for additive manufacturing fill interiors with
sparse fill patterns [LEM∗17]. These patterns typically have a uni-
form density, and therefore take significant time and material to
print within large volumes. Recent works define hierarchical, self-
supporting fill patterns that print efficiently [Lef15] and can be sub-
divided following e.g. a mechanical criterion [WWZW16]. Lee et
al. [LL16] propose to remove unnecessary facets in similar fill pat-
terns so as to maximally empty a part.

Closer to our work, Hornus et al. [HLDC16] define large self-
supporting cavities through morphological operations in the slices
of an object. Our technique applies this construction iteratively in
order to obtain printed objects that are almost completely empty,
and further minimizes time and material by using only walls of the
minimal printable thickness. While [HLDC16] relies on bitmaps,
we discuss a robust polygonal implementation of the procedure and
its iterative application, which is significantly faster on tall objects,
and produces smoother paths.

† This work was supported by ERC grant ShapeForge (StG-2012-307877).

The idea of iterating self-supporting cavities has also been re-
cently proposed in concurrent work [WLW∗17]. This approach de-
composes a volume into parts homeomorphic to cylinders, opti-
mizes a cavity in each, and iterates on the remaining volumes. Cavi-
ties are optimized to consider objectives such as balance. While our
work does not offer this capability, our approach generates more
general cavities without the need for topological decomposition.
It scales to large shapes and is orders of magnitude faster, while
keeping only two slices in memory at any time. This is a crucial
consideration when processing large objects. The present work is
further detailed in our research report [HL17].

A polygonal implementation. One of the goals of minimizing the
amount of material used is to afford for larger objects to be printed
in reasonable time. For complex, detailed objects spanning a large
number of slices (e.g., several thousands) it is preferable to use a
vectorial geometric description of the slices, for the complexity of
a discrete, voxel-based representation grows too quickly. We repre-
sent a slice as a set of polygons with holes whose vertices lie on the
integer grid with a 1 µm resolution: typedef ClipperLib::Paths Slice;
In this setting, the Clipper library that we use is able to perform
fast and robust boolean operations on the slices [Joh].

2. Carving cavities inside a shape

A single cavity would leave potentially large filled volumes be-
tween its walls and the actual surface. Thus, instead of producing
a single cavity, we produce nested cavities: the remaining filled ar-
eas are iteratively analyzed and teared, spawning sub-cavities. Note
that the iterations happen within a single slice, therefore the whole
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process requires a single sweep from top to bottom and can be im-
plemented out-of-core.

2.1. Working with slices.

Given a shape X ⊂ R3 we define the slice of X at height z, writ-
ten X|z, as the intersection of X with a horizontal plane at height
z. Shapes are manipulated as a finite set of slices {X|i, i = 1 . . .n}
ordered from the bottom up. The notation i is an index in the bot-
tom up ordering instead of the actual height of the correspond-
ing slice. If S is a planar shape and r a non-negative number,
the dilation S↑r is the set of points at distance r or less from S:
S↑r = {p | ∃q ∈ S, |p− q| ≤ r}. Similarly, the erosion of S of ra-

dius r is S↓r = S
↑r where X is the complement of X : X = R2 \X .

The opening of S of radius r is OPEN(S,r) = S↓r
↑r

. We implement
these operations approximately using a Minkowski sum with a con-
vex regular polygon D having 24 vertices with integer coordinates.
The advantages are twofold: First, S↑r ≈ S⊕D can be computed
very quickly with contour convolutions [BL10]. Second, the oper-
ation is associative: (S⊕D)⊕D = S⊕ (2D), so that the number of
vertices on subsequent dilations or erosions never grows out of con-
trol. Implementation details for the Minkowski sum are provided
in [HL17, Appendix A].

Let s be the radius of the extrusion nozzle (typically 0.2 mm). Let
r be the distance by which we dilate each cavity when propagating
it from one slice to the slice below (see below). The value of r is
typically chosen so that the slope of the surface of a cavity is 45◦,
so that the resulting surfaces are self-supporting.

2.2. Modeling a single cavity

The single-cavity technique should model a large volume C ⊂ O
that can be completely carved out of a given object O, while still
maintaining 3d-printability. We describe the CAV procedure from
Hornus et al. [HLDC16] and then extend it with iteration in §2.3.

The idea for CAV is to sweep through the object slices from top
to bottom and, at each slice, analyze whether a cavity can be started
by “tearing” a filled area open. The tear is then propagated down-
wards through morphological dilation, producing a self-supporting
surface. This is achieved by incorporating the shape C↑r|i+1 into the
slice C|i immediately below. The pseudocode for CAV is shown in
Algorithm 1. Figure 1 gives a 2D-world example. Figure 2 illus-
trates the cavity modeling process in 3D on a selected number of
slices. In this figure, the input is an L-shape of side length 12 mm
extruded vertically to a height of 12 mm. The left column shows the
seeding (green) and growth of the first cavity C1 = CAV(O) (red)
where O is the input shape with some “cover” removed.

Seeding the growth of the cavity. In order to seed the growth of
a cavity C inside O, we need a shape that can serve as topmost
slice of C and bootstrap the growth of the cavity C in the slices
below. [HLDC16] argues for the use of a filtered medial axis of
each slice as the seed shape. We compute the seed shape by prun-
ing the medial axis of the current slice using the extended distance
function as defined and studied by Liu et al. [LCLJ11]. This partic-
ular pruned medial axis is particularly robust to small perturbations
along the contours of the input polygons, contrary to the discrete

Algorithm 1 CAV computes a single cavity inside O.

1: function CAV(Shape O)
2: C|n+1← empty slice . n is the number of slices of O
3: for i = n downto 1 do
4: G←C↑r

|i+1 . Dilate the upper slice
5: S← SKEL(O|i) . Seed shape for that slice

6: C|i← (G∪S)∩O|i . C|i has to stay in O|i
7: return cavity C

approach used in [HLDC16]. We thus obtain very clean seed shapes
affording for fast and smooth motions of the 3D printer nozzle.
We compute the medial axis of a slice using the Segment Delau-
nay Graph of the CGAL library [Kar16]. We prune it as detailed
in [LCLJ11] and dilate the result by a disk of diameter equal to
that of the printer nozzle. The contour of the dilation is now inter-
preted as a print-path and is ready to be used in the CAV procedure
(Figure 2, top row).

Bridges. Once modeled using the CAV algorithm, the surface of
the cavity may exhibit local minima. Cavity C1 in Figure 1-middle
has three such minima. Since the surface of the cavity is printed,
additional support is required below each local minimum. We use
Clipper’s hierarchical representation of the slice boundaries to de-
tect the local minima as small empty holes that disappear in the
slice below. We then replace each local minimum by a set of bridges
that cover the local minimum and are anchored on the cavity bound-
ary (Figure 3 top left). Dumas et al. propose a detailed analysis of
these bridges [DHL14]. As argued in [HLDC16] using the medial-
axis as seed shape tends to minimize the number of local minima.

2.3. Iterated carving

By observing Figure 1-middle, one can see that the complement of
the cavity, O\C1, still makes for a significant volume. We thus pro-
pose to apply the CAV procedure again in order to model a second
cavity in this region, and to iterate this carving process a number
of times, each time carving a cavity in the volume that the previous
cavity was not able to cover. The pseudocode for this procedure is
shown in Algorithm 2. Figure 1-right demonstrates the modeling
of a 4 iterated cavities in a 2D world. The second column of Fig-
ure 2 illustrates the 3D modeling of the second cavity C2 (blue),
including the seed-shape computed for V 1 = O\C1 (green).

Algorithm 2 The function ITERATIVECARVING.

1: function ITERATIVECARVING(Shape O, Integer k)
2: V 0← O . k is the number of iterations to perform.
3: for i = 1 to k do
4: Ci←CAV(V i−1)
5: V i←V i−1 \Ci

6: return (C1,C2, . . . ,Ck,V k)

The number of iterations is either fixed (from 3 to 6 typically) or
the iterative process stopped when no useful cavity can be created
in the remaining volume V i. Writing C0 = R3 \O, at the end of the
call to ITERATIVECARVING one obtains a partition of R3 = Ot
C0 =V k t

⊔k
i=0 Ci. (The symbol t stands for the disjoint union.)
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Figure 1: In 2D, an object is represented as a stack of slices. Each slice is a set of collinear horizontal line segments. Left: The main object
is O (gray). In 2D, the seed shape for a slice is simply the center of each segment (green). Middle: The cavity C1 = CAV(O) is drawn red.
Each arrow points to a local minimum. Right: Iterated cavities. C1 is drawn red, C2 blue, C3 yellow and C4 green.

Covers. Surfaces close to being horizontal are usually printed
densely so as to avoid see-through holes. This dense part is known
as the cover and is typically 2 to 6 layers thick. When modeling the
cavities inside a shape, one should not touch the cover, so that the
parameter O given to the ITERATIVECARVING procedure should
corresponds to the main object of interest with its cover subtracted.
When enough iterations are used, the union of the boundaries of
all the cavities just below the cover provides a good support for
the cover (Figure 1-right). Alternatively, one may choose to fill the
volume V k with some common infill pattern.

3. From cavities to print-paths

The sliced representation of the cavities has to be turned into curves
along which material should be solidified or deposited in a specific
order. We call these curves print-paths. In the remainder we focus
specifically on the case of widely available filament printers. The
slices are processed independently of each other: we describe the
process for a single slice. In a slice at height z, the object O and
each cavity Ci are planar shapes O|z,C

i
|z. Each boundary coincides

locally with the boundary of another shape (a cavity Ci or V k or O),
so these boundaries can not be used directly as print-paths.

We print the boundaries of the cavities in the order they were
modeled: C0,C1, . . . ,Ck. When extruding fused material along a
print-paths p on the boundary curve of cavity Ci, we can thus as-
sume that the print-paths for cavities C j, j < i have already been
“printed.” We then simply avoid extruding material on the parts of
print-path p that coincide with a boundary of some cavity that has
already been printed.

Recall that V i is the volume out of which we model the cavity
Ci+1 using the CAV procedure. The boundaries of a slice V i

|z is com-

posed of pieces of boundaries from C0, . . . ,Ci that can be thought of
as print-paths, although they haven’t been through smoothing and
filtering of small components yet. The future print-paths for Ci+1

|z
must lie at a distance at least ≈ 2s away from these boundaries,
i.e., lie in an erosion of V i

|z. We thus compute a restriction shape

W i
|z ← V i

|z
↓t
. The value of t = 1.4s is explained below. The print-

paths are obtained as follows: First, the cavity slices are smoothed
and small components removed: Pi

|z ← OPEN(Ci
|z,

9s
10 ). Then, we

compute the intersection of both the cavity and its boundaries with
the restriction shape: Qi

|z← Pi
|z∩W i

|z and Ri
|z← ∂Pi

|z∩W i
|z.

Ri
|z is not a 2D planar shape but a set of open and closed curves

in the plane. These curves form a subset of the boundaries of Qi
|z:

Ri
|z ⊂ ∂Qi

|z. The curves in ∂Qi
|z \ R

i
|z are the precise locations

where a print-path is not necessary because one will already be
placed there in the processing of the slice of a cavity C j, j < i.

To guarantee that the filaments along Ri
|z adhere well to the

neighboring cavities C j, j < i, we extend them along ∂Qi
|z, over a

distance of about 1 mm at both ends. The value of t is chosen a bit
smaller than 2s to further increase adhesion along these extensions.

4. Results

Scalability. In this experiment, we process a single input model
(https://www.thingiverse.com/thing:12694) at various
scales, from 1 to 10. The number of iterations for modeling cav-
ities is fixed at 6 so that the cavities (almost) completely cover the
volume of the input model. Since the cavities are large and we only
print their surface, we expect the quantity of material used to print
the model to grow quadratically with the scaling factor. Figure 4
presents our measurements. When approximating the curves with
a formula of type Rσ

α where R is a constant and σ is the scaling
factor (in abscissa). we obtain α ≈ 2.1 for the volume of extruded
material. This indicates that the volume of our cavities walls scales
more like a surface than like a volume.

Slice 57

Slice 51

Slice 44

C1 and V 1 C1, C2 and V 2 print-paths

Figure 2: An example of modeling cavities with two iterations.
Same color scheme as Figure 1.
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Figure 3: Top left. An unusually high number of bridges appears
during the printing of the Fawn model. Top right. The models used
for comparing with the work of Lee et al. [LL16]. Bottom. Printing
without inner shell makes the models transparent enough to let us
see the inner cavities.

Comparisons. We compare our technique to the recent work of
Lee et al. [LL16], see Table 1. Seven simple but large models are
used for this benchmark (Figure 3-top right). For all models but the
Fawn our technique yields lower material usage and faster printing
time. The Fawn model contains many bridges and we suspect this
is the main reason why our technique is less efficient for this model.
It should be possible however to improve our technique to remove
many of these bridges which are not absolutely necessary.

We also compare to the concurrent work of [WLW∗17], on a
similar CPU. On their Kitten model we obtain 78 % material re-
duction vs. 75 % while being 273 times faster (6.9 s vs. 31.3 min).
On their Children model we achieve 63 % vs. 53 %, while being
144 times faster (25 s vs. 59.7 min). Our approach scales trivially
to very large models, while the number of variables to optimize
in [WLW∗17] grows quadratically. However, we cannot optimize
for other objectives beyond maximizing cavity volumes.
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Figure 4: Horizontal axis: scaling factor applied to the input
model. Left. Model height and processing time, including loading
the STL file, processing the slices and writing the GCode file. Right.
Volume of the input model (divided by 10 for clarity) and volume of
the extruded material for printing the modeling with our cavities.

Thin test. We have experimented with printing the models with a
minimal amount of material, just 2 layers of “cover” and no shell,
so that the surface of the model is printed with a single-filament
thickness (only the perimeter is printed). Results are reported in
columns “2c 0s” of Table 1. Because of their thinness a strong back
light lets us see the cavities inside the object (Figure 3-bottom).
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Time (min.) Volume (cm3) Weight (g)
Model Volume k 2c 0s 3c 1s M2 2c 0s 3c 1s 2c 0s 3c 1s M2
Cat 261.1 5 183’ 223’ 240’ 20.3 (7.77 %) 29.0 (11.11 %) 24.4 35.5 37.6
Fawn 387.6 6 249’ 301’ 284’ 27.8 (7.17 %) 39.4 (10.17 %) 31.3 47.9 45.6
Fox 516.0 5 192’ 261’ 300’ 22.0 (4.26 %) 36.3 (7.03 %) 26.4 45.0 52.7
Giraffe 355.5 5 203’ 258’ 301’ 22.6 (6.36 %) 34.6 (9.73 %) 25.7 42.1 49.4
Moai 836.4 5 279’ 369’ 451’ 32.4 (3.87 %) 52.4 (6.26 %) 36.6 62.8 77.1
Skull 1056.4 6 279’ 368’ 382’ 35.4 (3.35 %) 53.5 (5.06 %) 42.6 65.5 68.9
Yoda 390.5 5 222’ 261’ 311’ 21.5 (5.51 %) 32.7 (8.37 %) 24.6 38.9 51.3

Table 1: Comparisons with Lee et al. [LL16]. “k” is the number
of iterations used to model the cavities. “Volume” (first) is the vol-
ume of the input object. “Volume” (second) is the material used
for printing. (In parenthesis: percentage of the total volume of the
object.) The column “M2” shows the values of the best technique
in the work of Lee et al. The column “3c 1s” uses a cover 3 layers
thick and 1 shell (in addition to the perimeter). This is the same
configuration used by Lee et al. so that this column is directly com-
parable with column “M2”. Better values are typed in boldface.
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