
EUROGRAPHICS 2018/ O. Diamanti and A. Vaxman Short Paper

Raw point cloud deferred shading through screen space pyramidal
operators

H. Bouchiba1,2, J-E. Deschaud1 and F. Goulette1

1 MINES ParisTech, PSL Research University, CAOR - Centre de robotique, Paris, France
2 Terra3D Research, Paris, France

Figure 1: 73.6 million points laser scanned Scalina Etruscan tomb rendered with our algorithm at 120 fps. The surface (right) is recon-
structed only from a depth buffer (left) by efficient pyramidal operators in real-time on the GPU.

Abstract
We present a novel real-time raw point cloud rendering algorithm based on efficient screen-space pyramidal operators. Our
method is based on a pyramidal occlusion-based hidden point removal operator followed by a pyramidal reconstruction by the
pull push algorithm. Then a new pyramidal smooth normals estimator enables subsequent deferred shading. We demonstrate
on various real-world complex objects and scenes that our method achieves better visual results and is one order of magnitude
more efficient comparing to state of the art algorithms.

CCS Concepts
•Computing methodologies → Point-based models; Image manipulation; Rasterization;

1. Introduction

Today’s 3D scanners produce massive and detailed 3D point
clouds. One way to visualize them is to reconstruct a mesh, which
is a computational intensive process. Splatting [BHZK05], i.e. ren-
dering points as ellipses, is another traditional approach to render
a filled surface directly from points. This approach still involves
heavy precomputing as it needs normals and radii. This is a prob-
lem when the dataset is massive or when visualization should be
performed on the fly.

We propose a new method to render raw point clouds interac-
tively. The main contribution of the paper is a pyramidal occlusion-
based hidden point removal operator, used in conjunction with the

pull-push algorithm for rendering point clouds. It is based on a sin-
gle geometric pass and on screen space operators, it is then inde-
pendent from the scene complexity. The use of pyramidal opera-
tors allows achieving high framerates. The produced high-quality
surface and the estimated normals are well suited for subsequent
deferred shading.

2. Related work

One approach to render points directly without reconstructing an
explicit mesh is to perform surface splatting [BHZK05]. However,
surface splatting involves costly computation of normals and radii
in preprocessing, which quality is also highly sensitive to real-

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

DOI: 10.2312/egs.20181036

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/egs.20181036


H. Bouchiba, J-E. Deschaud & F. Goulette / Raw point cloud deferred shading

Figure 2: Overview of our method pipeline. (a) Geometry rendering with one pixel per point. (b) Hidden Point Removal (HPR), in red:
foreground visible points, in green: hidden points. (c) Depth and attributes reconstruction [Kra09]. (d) Normals estimation. (e) Shading.

world point cloud artifacts: noise, holes, misalignment and outliers.
In addition, surface splatting fails to reconstruct complex structures
and produces artifacts on regions with high curvature.

Another way to render point clouds efficiently without prepro-
cessing is to increase the size of the points. [SW15] shows that this
simple method can achieve good quality results by drawing, for
each point, camera aligned paraboloids instead of flat squares. This
method however fails to generate a smooth filled surface, it is then
only suited for image-based rendering of colored point clouds.

Finally, the most efficient approach for point cloud rendering
is to use screen space operators. [MKC08] use the pull-push al-
gorithm to reconstruct a filled color and depth buffer. However,
they rely on precomputed normals to perform both reconstruction
and shading. [PJW12] use screen space nearest neighbor queries to
compute normals and radii to feed [BHZK05] splatting algorithm
in real-time. Their algorithm is however very computational inten-
sive. [PGA11] use an interesting screen-space visibility operator
to remove the non-visible parts of the scene. The space between
points is then filled by an iterated median filter. Such iterative fill-
ing algorithms, also as [RL08], are limited and cannot achieve high
quality surfaces. In addition, the above cited methods do not han-
dle scenes with high depth differences as they are based on fixed
neighborhood sizes in image space.

3. Proposed method

Our method uses as input a framebuffer with depth and an op-
tional color after a single geometric pass that renders one pixel per
point. The method is then based on three screen space pyramidal
operators. The first one is a Hidden Point Removal (HPR) opera-
tor that suppresses the points seen through the model due to the
discrete sampling of the points. It also labels the background and
the foreground of the final image. Then we use the pull push algo-
rithm [Kra09] to reconstruct a depth and color filled framebuffer.
The depth texture pyramid built in the push phase is then reused
to estimate filtered normals in the final framebuffer. This later can
then be used to perform deferred shading on the reconstructed sur-
face. This pipeline is depicted in Figure 2.

The only parameter of our method is an approximate metric scale
s0 provided by the user that should be on the order of magnitude of
the point sampling.

Figure 3: Pyramidal neighborhood pattern around a central pixel
(in black) used to compute the visibility of each point.

3.1. Pyramidal and adaptive hidden point removal

A new HPR operator is used to remove the supposed hidden parts
of the point cloud seen by transparency over it. This operator is
applied to the whole image (even on the background pixels). As
[PGA11] we use an occlusion-based operator. But unlike [PGA11],
our operator is adaptive with depth ; thus, it handles better scenes
with high depth differences. It is also one order of magnitude more
efficient as it is computed thanks to an image pyramid.

3.1.1. Point cloud pyramid construction

The first step consists in building an image space point cloud hi-
erarchy from the input depth buffer. The depth buffer is first un-
projected from the screen projective space to the camera Cartesian
frame and stored to a (x,y,z) float texture. This texture is the level 0
of the pyramid and then the other levels are built recursively. For the
level l each pixel (il , jl) is obtained by keeping the point with the
minimum screen depth in the {2il ,2il + 1}×{2 jl ,2 jl + 1} neigh-
borhood in the l− 1 level texture. This pyramid holds then a fine
to coarse subsampled representation of the input depth buffer. It
can be interpreted as an efficient way to gather neighboring pixel
information.

3.1.2. Adaptive occlusion operator

The second step is an approximate occlusion computation for each
point of the input framebuffer. The operator is applied to the whole
image. Background pixels depth is set to the camera far clip plane.
Given an input point x, its neighborhood is computed thanks to the

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

26



H. Bouchiba, J-E. Deschaud & F. Goulette / Raw point cloud deferred shading

Figure 4: Closeup on HPR results. In red points removed by the
HPR: (left) fixed neighborhood, using [PGA11] (right) adaptive
neighborhood, using our method.

pyramid, with the pattern described in Figure 3. Each point y in its
neighborhood is associated to one of the 8 sectors, represented by
a different color in Figure 3. For each sector we keep the neighbor
with the minimum occlusion value :

(
1− y−x
‖y−x‖ ·

−y
‖y‖

)
. The mean

of the 8 occlusion values is then compared to a threshold, typically
0.1 (same value for all datasets). The pixels below this value are
labeled as holes and the others as visible (see Figure 2b).

Compared to exhaustive neighborhood [PGA11], using pyrami-
dal neighborhood improves the complexity of the algorithm by de-
creasing the total number of visited neighbors. Indeed, given a pixel
radius r0 the extensive neighborhood visits∼ r2

0 pixels whereas the
pyramidal one visits ∼ logr0.

To handle scenes with high depth differences, we use an adap-
tive neighborhood size. To do so, we use one level of the pyramid as
coarse depth map. Experiments shows that the 4th level of the pyra-
mid gives good results. This depth map is then used to estimate the
level of the neighborhood thanks to the following formula:

l(zi) = log
(

shprh
2tan(θ)

1
zi

)
/ log2 (1)

Where h is the viewport height θ the half of the vertical field of
view, zi the coarse depth value for a given pixel, and shpr a metric
size of the HPR projected neighborhood. Experiments shows that
shpr = 10s0 is a good value for a wide range of datasets. A compar-
ison between adaptive and fixed size neighborhood is presented in
Figure 4. The adaptive operator does not overestimate the hidden
points on the scene, particularly under the bridge in Figure 4.

3.2. Pyramidal reconstruction by pull push algorithm

Given the visibility mask obtained after the previous phase, we fil-
ter out hidden points from the input framebuffer. They are then
considered as background points and their initial weight is set to
0. We then reconstruct a filled framebuffer thanks to the weighted
pull push algorithm in 2D, introduced by [GGSC96] and improved
by [Kra09]. We then recover the background in the filled frame-
buffer by taking visible background pixels obtained by the HPR
operator.

3.3. Pyramidal normals estimation

The pull push algorithm applied to depth reconstruction yields a
noisy surface and thus noisy normals if estimated from the finest

Figure 5: Pyramidal normals estimation. Closeup on: (a) noisy
normals estimated from the level 0, (b) smoothed normals.

Dataset geometry pass [PGA11] HPR our HPR
Scalina 1.4 ms 58 ms (25) 2.7 ms

Water-moon 2.0 ms 21 ms (15) 2.1 ms
Ajaccio 11.4 ms 21.6 ms (15) 2.3 ms

Table 1: Per frame processing time comparison between, [PGA11]
(in parentheses the equivalent radius size in pixels), and our
method.

reconstructed depth. In order to estimate smooth normals, we in-
troduced a new adaptive and pyramidal operator. First we compute
normals on each depth texture obtained in the push phase of the
previous algorithm in order to obtain a multiresolution normal map.
Normals are computed by simple cross product between neighbor-
ing pixels. Then given a pixel in the target normal map, we first
compute a radius from its depth. We perform a linear interpolation
between the normals at the two nearest levels in the pyramid. Nor-
mals inside each level are obtained by bilinear interpolation. The
results are illustrated in Figure 5.

4. Results

We implemented our method in C++ with OpenGL. All the images
have been rendered at 1248 x 768 on a 4.2 Ghz Intel Core i7 with
an Nvidia GTX 1080. We show in Figure 1 and Figure 6 that our
method achieves good visual results on a wide range of point clouds
types from photogrammetry (b) to noisy mobile mapping (c).

Table 1 shows that our new HPR operator, which is usually the
bottleneck of the pipeline, is ten times more efficient than state of
the art. The processing time is constant over various datasets and is
similar to the geometric pass.

5. Conclusion

We introduced a new pipeline for efficient raw point cloud render-
ing. This pipeline achieves visual results that surpasses state of the
art, thanks to the combination of depth reconstruction by pull push
and to a new pyramidal normal estimator. Our method is indepen-
dent from the scene complexity by the use of a single geometry

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

27



H. Bouchiba, J-E. Deschaud & F. Goulette / Raw point cloud deferred shading

Figure 6: (left) raw point cloud views. (right) shaded reconstructed model with our algorithm. (a) Stanford Bunny dataset 350k points. (b)
Water-moon Asian statue 6 million points. (c) Ajaccio city 2.7 billion points, a noisy mobile mapping scene. This dataset is rendered with an
algorithm similar to [WS06] points that feeds the GPU with approximately 30 million points per frame.

pass and screen space operators. It finally achieves low computa-
tion times enabling high framerate demanding applications, such
as virtual reality.

References

[BHZK05] BOTSCH M., HORNUNG A., ZWICKER M., KOBBELT L.:
High-quality surface splatting on today’s GPUs. In Proceedings Eu-
rographics/IEEE VGTC Symposium Point-Based Graphics, 2005. (June
2005), pp. 17–141. 1, 2

[GGSC96] GORTLER S. J., GRZESZCZUK R., SZELISKI R., COHEN
M. F.: The Lumigraph. In Proceedings of the 23rd Annual Confer-
ence on Computer Graphics and Interactive Techniques (New York, NY,
USA, 1996), SIGGRAPH ’96, ACM, pp. 43–54. 3

[Kra09] KRAUS M.: The pull-push algorithm revisited. Proceedings
GRAPP 2009 (2009). 2, 3

[MKC08] MARROQUIM R., KRAUS M., CAVALCANTI P. R.: Efficient

image reconstruction for point-based and line-based rendering. Comput-
ers & Graphics 32, 2 (Apr. 2008), 189–203. 2

[PGA11] PINTUS R., GOBBETTI E., AGUS M.: Real-time Rendering of
Massive Unstructured Raw Point Clouds Using Screen-space Operators.
VAST’11, Eurographics Association, pp. 105–112. 2, 3

[PJW12] PREINER R., JESCHKE S., WIMMER M.: Auto Splats: Dy-
namic Point Cloud Visualization on the GPU. In EGPGV (2012),
pp. 139–148. 2

[RL08] ROSENTHAL P., LINSEN L.: Image-space point cloud rendering.
In Proceedings of Computer Graphics International (2008), pp. 136–
143. 2

[SW15] SCHÃIJTZ M., WIMMER M.: High-quality point-based render-
ing using fast single-pass interpolation. In 2015 Digital Heritage (Sept.
2015), vol. 1, pp. 369–372. 2

[WS06] WIMMER M., SCHEIBLAUER C.: Instant Points: Fast Rendering
of Unprocessed Point Clouds. In SPBG (2006), Citeseer, pp. 129–136. 4

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

28


