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Continuous Local Parameterization of Polygons

Jérôme Maillot †

Abstract

Texture mapping has now become a standard technique for adding visual details to 3d models. Nevertheless,
intuitive mapping tools have made little progress in the past decade, compared to other computer graphics areas:
defining a good quality parameterization is still a tedious process, requiring experienced and skilled users.
In this paper, we specifically address the problem of finding automatically a parameterization of a reasonably small
portion of the surface. This method is simple and efficient, which makes it suitable for interactive applications. It
is also continuous in terms of the user input, so that it is stable during animation and interaction. Finally, it only
requires the user to define a small set of intuitive parameters, mostly position, size and orientation of the area to
be parameterized. Thus, it can be used by inexperienced users and easily connected to existing applications.
We show how our method can improve 3D-paint systems and decal placement on surfaces. The same approach
can also be used to adapt 2D image processing tools to geometry filtering.
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Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Viewing algorithms

1. Introduction

While a large number of commercial 2D paint tools are avail-
able 17, direct painting on surfaces is still a challenge. One
reason is the fact that images are made of a collection of very
organized samples: the pixels form a rectangular grid. Every
pixel has a natural definition of neighbors, orientation, and
size. All the paint operations and image transforms rely on
this assumption.
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On the contrary, 3D surface data is very unorganized. In
general it is impossible to define a consistent global co-
ordinate system on the surface. Traditionally, people have
been using a UV parameterization of the whole surface,
which always introduce distortion and discontinuities. A
constrained optimization algorithm can be used in order to
help the user 11, 12, 13, 14 define the parameterization, but the
process is still tedious, and requires human intervention.
Some work has been done to try to define the necessary tex-
ture seams 2, 9, 13, but so far, no satisfactory automatic method
have been proposed.

Turk 21 and Witkins 25 proposed at the same time to gener-
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Painting directly in the texture image introduces two types
of artifacts. The top row shows a sphere mapped with only
one UV piece. Constant size strokes in texture space result
in varying size on the 3d object. Furthermore, texture seams
(shown here as red lines) clip the strokes sharply.
In the bottom row, the UV mapping deformation has been
improved, using 6 plane projections. Stroke width preserva-
tion is enhanced, but the introduction of additional texture
seams makes the overall result still not acceptable.
The images on the left represent the mapped 3D model, those
on the right the texture that the user painted. The pink pixels
represents the unused texture areas, while the green part is
mapped on the 3d geometry.

Figure 1: Artifacts when painting the texture.

ate textures directly on the surface. This idea has been reused
and enhanced several years later 6, 7, 22, 23, 24. This provides an
elegant solution when the user want to cover a surface with
a pattern. A program can automatically generate a texture
on the whole surface, or a portion of it. Nevertheless, those
methods are not adapted for 3D paint or decal placement,
where the user wants to control precisely how the texture
will look like on the object.

The generalization of paint operations to handle non-
regular sampling and texture seams is a difficult process,
especially when operations like smearing or blurring are in-
volved. Most commercial packages 4, 8 get around the prob-
lem by requiring the user to define a good parameterization
up-front, and by painting directly into the 2D texture. As
shown in figure 1, this introduces two types of artifacts: a de-
formation of the paint stroke, as well as sharp clipping along
texture seams. Adapting the parameterization to reduce the
deformation necessitates more seams, and creates more arti-
facts of the second type.

Instead of using a single global parameterization for the

Using a local parameterization for each brush stamp, and
accumulating stamps into the texture let the user paint on the
geometry regardless of seems and UV mapping distortion.
We painted strokes similar to the ones in Fig. 1 using our
system.

Figure 2: Using local adapted parameterization.

painting process, we propose to build on the fly many lo-
cal ones, which are small enough to minimize distortion,
avoid seams and be easily computed. Yet, they must be large
enough to allow non trivial paint operations. It is also nec-
essary that the parameterization vary smoothly as the user
paints.

A global parameterization is still necessary to produce a
single texture, in order to feed the result in a conventional
graphics package, as shown in figure 2. But when using the
appropriate algorithm to render the texture, like the one de-
scribed in section 8, texture seams and mapping distortion
are not an issue any more.

2. Overview

We will use 3D painting as the main example throughout
this paper; section 10 shows additional applications of this
technique.

The purpose of a paint program is to modify an image
according to the user input. The user can draw curves called
strokes, either directly on the texture or on the 3D surface.
Each stroke is discretized into a series of samples, as shown
in figure 3. In texture space, the sample is just the current UV
position. When painting on a 3D surface, the sample is a 3D
position, generally determined by intersecting the view ray
under the mouse position with the 3D geometry. We call this
3D location the hit point. The paint program then performs a
simple operation for each of such sample, which consists of
painting a single stamp.
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In paint systems, the user draws the red path, on the texture,
or in the 3d view. The path is sampled, and for each sample,
a stamp (blue disc) is painted into the texture. The accumu-
lation of many stamps creates the impression of a solid thick
line, the stroke. In the upper left corner, the sampling spacing
has been artificially increased to distinguish each individual
stamp.

Figure 3: Paint strokes and stamps.

We propose to introduce an intermediate coordinate space
for each stamp, which is more appropriate than the texture
space used in commercial packages. We compute a local
parameterization, which is just large enough to cover the
stamp, so that we can limit the texture mapping distortion,
and avoid all texture seams. Our method will ensure that
two successive stamps will have consistent parameterization
in the overlap area, and that the computations are simple
enough to cope with interactive feedback.

Let’s call r the stamp radius, computed in world space.
Our algorithm is made of the following steps:

1. Compute the hit point H, the three vertices V1, V2, V3
forming the triangle H belongs to, and the correspond-
ing barycentric coordinates αi of point H.

2. For each vertex Vi:

a. Find the size si of the largest connected edge.
b. Compute the list Li of all triangles, which are at a dis-

tance at most r + si of Vi.
c. Find the optimal parameterization Pi for Li, using an

existing relaxation method.
d. Compare the parameterization shape with the stamp

outline. Possibly add or remove triangles, and repeat
step 2.c. while the domain changes.

3. Rotate, translate and scale the parameterizations Pi into
a common coordinate system.

4. Interpolate the parameterizationsPi using barycentric co-
ordinates αi for all common triangles in the three lists Li.

5. Paint the texture using the interpolated local parameteri-
zation and a global texture mapping function.

3. Determining the hit point.

For small objects, the application can explicitly test the in-
tersection of the view ray with every triangle of the surface.
The closest intersection to the camera is kept.

Fig. 4-a Fig. 4-b Fig. 4-c

Fig. 4-d Fig. 4-e Fig. 4-f

Figure 4: When part of the surface silhouette projects inside
the brush profile, both the front and back part of the object
are included. Figure 4-a shows the brush projection on a flat
torus; a mirror has been placed behind the torus to show
the back part. Figure 4-b is the result of the optimization.
In Figure 4-c, the large unnecessary part on the back has
been culled, and the smaller neighborhood optimized again.
Figures 4-d,e,f show the corresponding stamp spaces.

For larger objects a brute force approach is too time con-
suming to achieve interactive rates. It is possible to use the
previous hit point as a hint to accelerate the search: in most
situations, successive hit points belong to the same, or neigh-
boring triangles. The algorithm presented here looks for an
intersecting triangle, using a breadth first search on the tri-
angles, starting from the triangle of the previous hit.

This method is less accurate, because it does not guaranty
to return the hit which is the closest to the eye, for concave
objects. Another potential drawback of this method is that
the computation time will vary, depending on how many tri-
angles need to be traversed before a hit point is found.

Nevertheless, this algorithm is simple to implement, and
does not require to precompute additional data structures
like octrees or BSP’s. It has been successfully used by artists
in commercial packages like Maya 15, for direct interaction
on surfaces.

4. Defining the neighborhoods Li

The second step in our process consists in defining a sub-
set of the surface which be large enough to represent the
stamp. As only the part inside that stamp area will be used,
we must avoid selecting a large part of the surface. The rea-
son is twofold: firstly, this would add more variables to the
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optimization step and make the process slower. Secondly,
this defines more constraints to the optimizer, and will result
in more distortion in the interesting area. As an example, the
smaller region mapped in figure 4-c results in a better map-
ping along the torus silhouette than in figure 4-b.

The main problem here is that the exact shape of the part
of the model that will be covered is not known until the op-
timization is run. We propose one heuristic which proved to
be simple to implement and efficient, yet yielded satisfactory
results for users.

We compute a projection along the normal of the consid-
ered vertex. All the connected triangles which intersect the
brush shape when projected into the brush plane are kept.
Figure 4-a shows an example of such an area. As a projec-
tion will always reduce the size of triangles, the optimization
process will tend to expand the UV domain, which generally
will ensure that the whole stamp will be covered.

This does a good job on most surfaces, but may produce
too large neighborhoods. In particular, when some part of
the object silhouette is projected inside the brush, like in fig-
ure 4, both the front and back part of the object are selected.
Section 6 explains how we resolve this issue.

5. Optimization technique

We need a fair parameterization, that preserves the lengths
and angles as much as possible, to have the stamp warp along
the geometry. This can be characterized as minimizing a dis-
tortion function 5, 14. When the neighborhood is very small,
a planar projection can be sufficient. But for useful stroke
thickness, this may distort the stamp too much: we need to
improve the mapping from the stamp to the surface. Several
optimization methods have been proposed 11, 12, 14, but they
are too slow for our interactive framework.

We implemented the cost function described in 2002 by
Levy 13, and optimized it with a standard conjugate gradient
method 19. The fact that this function is linear makes it easy
to implement and fast enough to optimize for interactive ap-
plications.

It is important to note that any other optimization algo-
rithm with similar performance could be used in combina-
tion with the presented method.

6. Refining the neighborhoods

After the optimization, the resulting mapped area is gener-
ally too large, or sometimes misses a few triangles. The right
side of figure 4-e shows an example of a large unnecessary
mapped area.

In this step, all the triangles totally outside the stamp area
are removed. In addition, the border of the mapped region
(all the edges belonging to only one mapped triangle) is
computed. For every border edge that intersects the interior

Fig. 5-a Fig. 5-b Fig. 5-c

Figure 5: Two successive frames 5-a and 5-b from an anima-
tion where the stamp radius increases. All the triangles with
valid parameterization are textured. The transparent sphere
centered on the black dot represents the stamp size. Only
one triangle was added on the right side, but this is suffi-
cient to produce a noticeable popping effect during an ani-
mation. Using only discrete radius values, and interpolating
the corresponding parameterizations eliminates this artifact.
Fig. 5-c is an image difference between 5-a and 5-b.

of the stamp, we check the 3d geometry to determine if this
is a geometry boundary also. When this is not the case, the
missing triangle can be added. It must be noted that this case
is very rare, and could be virtually eliminated by increasing
slightly the brush size.

After the neighborhood has been adjusted, a new opti-
mization is ran. In order to get the best result, this process
can be repeated several times, until the neighborhood does
not change any more. But this requires to take some pre-
cautions to avoid infinite loops where triangles removed in
one step would be added again in the next. In most cases
though, a single adjustment is sufficient. Our algorithm has
been written to only remove triangle in the first adjustment,
and repeatedly add triangles until the region does not change
any more.

7. Ensuring continuity

We need to ensure that the local parameterization varies
smoothly when the user moves the center of the the brush
along the surface. For 3D paint, when two successive stamps
overlap, the painted stroke should result in the proper ac-
cumulation of many stamps. Coherency is critical to ensure
good quality results, especially when using textured brushes,
or operations like smearing. Also, the user placing decals
on a surface does not expect sudden changes as the decal is
dragged.

In order to avoid discontinuities in the parameterization
when the neighborhood is modified, we only compute a fi-
nite number local parameterizations, and interpolate them.
We used a piecewise linear interpolation, where the parame-
terizations are computed for each vertex of the triangle mesh.

Each hit point keeps track of the three vertices forming the
triangle it belongs to. The parameterization process defined
above is ran for each of those three vertices, but the size of
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the stamp is increased by the length of the longest edge con-
nected to that vertex. The reason is that the parameterization
must cover all the triangles required when the brush center
moves anywhere in any connected triangle.

The three parameterizations are translated, rotated, and
scaled to ensure the best match of the current triangle, us-
ing a least square minimization of the distances of the three
vertices. As for 3D mesh morphing 1, fitting the orientations
is critical to avoid UV shrinking during the interpolation.

The final parameterization is then interpolated using the
barycentric coordinates of the hit point in the triangle. As
each vertex parameterization does not depend on the hit tri-
angle, we can guarantee that the result will vary smoothly,
even when the brush crosses an edge between two triangles.

It must be noted that the domains of the three maps are
not exactly the same. Only triangles which have a valid pa-
rameterization for the three vertices are interpolated. But as
the brush size has been increased by the length of the longest
connected edge, the common domain is large enough to fully
cover the stamp.

For some applications the stamp size will remain constant.
This is the case when painting constant width strokes, or
dragging a decal at the surface of a model. But the stroke
width can also be tied to the stylus pressure for example,
and the user may experience sudden jumps in the parameter-
ization. This can be seen in figure 5 where a small change in
radius results in a noticeable checker pattern change.

The problem is that increasing the stamp size changes the
neighborhood, which results in a different optimization so-
lution. The way to avoid this problem is to compute the ver-
tex parameterization only for discretized size values. The
final result is the linear interpolation of lower and upper
discretized size value. This almost doubles the computation
time, as six local parameterization must be computed each
time instead of three, so it is desirable that users can disable
this feature when not necessary.

Applications can implement different schemes to define
the size values. The difference between two successive dis-
creet values must be small enough to avoid too large differ-
ences between the two neighborhoods, but not so small that
the two neighborhoods will be identical. A constant incre-
ment, proportional to the average edge length in the object
gives satisfactory results.

When the parameterization is computed, we translate it
so that the hit point always match a specific location in UV
space, generally the image center. Each vertex may also con-
tain a desired direction for the U axis. This vector can be de-
fined by the user, computed as a cross product between the
normal and a fixed direction, or set as the stroke tangent for
a 3D Paint application. We compute the three rotation angles
necessary to align the U axis with each direction defined for
the three vertices. The final rotation is computed using the

Figure 6: We define an optimal mapping between the stamp
space and the 3d model. The user already defined a global
UV mapping for the object. Combining both mappings al-
lows us to paint the texture properly, so that user sees a con-
stant width stroke on the surface.

barycentric interpolation of those three angles to ensure a
smoothly varying orientation.

Our solution is piecewise linear. It is C0 along the edges
of the triangles and for the scale values that change at least
one neighborhood, and C∞ in the rest of the input domain.

8. Rendering into the final texture

After the parameterization is defined, all the stamps must be
accumulated into a single texture. Any global parameteriza-
tion can be used, which may contain seams and large texture
distortion.

Each vertex Vi = {xi,yi,zi}, is associated with its global
texture coordinates Ui = {ui,vi}, and its local parameteriza-
tion Si = {si, ti}. For each triangle, the stamp texture is trans-
fered from the stamp space into the texture space by com-
bining the local and the global parameterization, as shown
in figure 6. This process is equivalent to rendering a flat ob-
ject, where the vertices are defined as {ui,vi,0} with the tex-
ture coordinates {si, ti}. Conventional scanline rendering al-
gorithms can be used.

Figure 7 shows that this process distorts the stamp tex-
ture in order to compensate for the global texture seams and
distortion, so that the strokes width on the 3D geometry is
preserved.

9. Coding optimizations

There are several implementation details which dramatically
increase the efficiency of the calculations.

The first part of the algorithm determines the local neigh-
borhood to consider. The hit point and the triangle it be-
longs to are known at this stage. In order to avoid searching
through the whole object, triangles are traversed in a breadth
first order, and culled as soon as they do not projects into the
stamp. The method complexity is proportional to the number
of triangles under the stamp, regardless of the object size.
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Fig. 7-a Fig. 7-b

Figure 7: Rendering individual triangle in the texture, using
the appropriate transformation between the stamp and the
texture eliminates stretching and seams artifacts. It would
be very difficult for a user to paint directly in the texture to
achieve the same result.

Determining the local neighborhood involves one opti-
mization after each modification of the triangle list Li. The
first optimizations are ran with very few conjugate gradient
iterations to quickly produce a coarse result. When Li is de-
termined, a smaller stopping threshold is used to finally pro-
duce the accurate result.

We cache the last three vertex parameterizations, or the
last six when the stamp size may vary. In practice, successive
hit points belong to the same triangle, and when this is not
the case, they often belong to adjacent triangles. In this case
the two (or four) vertices forming the common edge can be
reused. This allows to only run the interpolation step most
of the time, and limit the number of optimization calls to the
strict minimum.

As an example, the face model of figure 8 contains 6500
faces. Recomputing the parameterization at the size of the
figure can be done in real time on single processor Pentium
II machine.

10. Applications

Figure 9 shows an example of 3D painting. Each stamp used
our local parameterization to smoothly follow the surface.
In figure 10 we used a blur and smear tool. Both operations
require a local flat image to work. The color information is
extracted from the model and rendered in a temporary stamp
image, using the inverse of the rendering function described
in figure 6. A standard image processing filter can be ap-
plied, and the stamp is painted back onto the model.

Figure 11 shows an implementation of a wrap deformer
tool. The cube is moved and bent along the face surface us-
ing the local parameterization. In this example, we mapped
the X and Y space coordinates of the cube to the local U and
V, and moved the vertices by their Z values along the local
normal.

Fig. 8-a Fig. 8-b

Fig. 8-c Fig. 8-d

Figure 8: Extract from a test animation. The hit point is an-
imated and moves along the face surface. Both rows show
successive frames when the valid domain changes. The dif-
ferences between the parameterizations are very subtle, and
appear smooth when playing the movie.

11. Limitations and future work.

The major problem we encountered is when the stamp cov-
ers an area of the model which cannot be unwrapped eas-
ily. One reason may be that the object contains a lot of very
curved areas. This is happening for example just above the
upper lip of the model in figure 8. The base of the nose
is very intricate and difficult to map. Our method produces
some local parameterization, but it is very distorted. This is
a limitation of the model shape, and not much can be done.
In practice, users will generally not run into this problem,
because it means that the brush size is too large to produce
accurate results. It might be useful, though, to detect this
case, and either warn the user or automatically resize down
the brush temporarily. More test should be done in this case
to determine the ideal workflow.

It is also possible that the brush becomes so large that
the considered neighborhood completely wraps around the
object. In figure 12-a, the neighborhood of the hit point is
made of a single set of triangles forming a connected band
around the cone. This shape is very hard to optimize as a
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Figure 9: Face painted with our brush. The stroke follows
nicely the surface.

Figure 10: The top stroke was faded using a blur tool. The
cheek one modified with a smear operation.

Fig. 11-a Fig. 11-b

Figure 11: Extracts from a warping deformation test. A cube
is moved and deformed along the face.

Fig. 12-a Fig. 12-b

Fig. 12-c Fig. 12-d

Figure 12: When the neighborhood is not simply connected,
our algorithm may behave badly. Adding a seam at the back
on the cone solves the problem, as can be seen in the right
column.
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whole, which leads to the high amount of distortion. The
parameterization shown in figure 12-c is very bad. In simple
examples like this one, it is possible to insert a seam for all
edges which represent a maxima of the distance to the hit
point along the surface. This gives the solution shown in the
right column. In general, it is desirable to ensure that the
neighborhood is always simply connected.

We only implemented a piecewise linear interpolation of
the UV values. When the brush size varies, it would be easy
to compute the parameterizations for 4 size values instead of
2, and use a cubic interpolation, which would be smoother.
Similarly, we could compute and cache the parameteriza-
tions for more vertex positions and use a higher order in-
terpolation for the brush center. So far, we have not found a
good interpolation scheme for vertices, but some subdivision
surface methods could apply to this solve problem.

Finally, we would like to exploit this technique to filter
or resample the geometry. We believe that working in a lo-
cal flat space can allow simpler implementation of geome-
try smoothing, and better quality resampling. This technique
could also improve geometric tools like the shape cut and
paste presented by Biermann 3.
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