
EUROGRAPHICS 2003 / M. Chover, H. Hagen and D. Tost Short Presentations

Generation of Radiosity Texture Atlas
for Realistic Real-Time Rendering

Nicolas Ray, Jean-Christophe Ulysse, Xavier Cavin and Bruno Lévy

Project Isa, Inria Lorraine, France

Abstract

Radiosity methods are a both physically correct and efficient way to compute the global illumination giving the vi-
sual atmosphere to a 3D scene. In this paper, we present a new approach to optimizing the visualization of meshed
models illuminated using these methods. Our approach is based on a texture atlas, which makes it possible to store
the global illumination in a set of textures, that can be mapped in real-time onto the model by the graphics hard-
ware. Our contribution is a new robust atlas generation method well adapted to the visualization of illuminated
complex meshed models, and based on a tight cooperation between the segmentation and the parameterization
algorithms. In our segmentation method, the combinatorial information of the mesh is systematically preferred
over the geometry whenever possible, which makes the algorithm both simpler and more robust. Large industrial
models with complex topologies and poor mesh qualities can be efficiently processed. The paper concludes with
some results, showing our method applied to architectural and car design industry models, and demonstrating
that it both speeds up the visualization and is easy to integrate into existing advanced rendering software.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism – Color, shading, shadowing and texture

1. Introduction

Realistic rendering of virtual worlds requires to accurately
(i.e. physically) compute the direct and indirect effects of
light sources on the scene. In real-time rendering, the norm
is to rely on a local lighting model, to provide believable re-
alistic apperance. In this local model, only the surface data
at the visible point is needed to compute the lighting, allow-
ing very efficient hardware implementations. However, more
complex effects, such as soft shadows or indirect illumina-
tion, can not be handled by such a coarse approximation.

In a virtual environment with static lighting conditions,
the diffuse component on any surface remains the same from
any point of view, and can then be pre-computed off-line,
using for instance radiosity methods. At the rendering stage,
this pre-computed illumination is used to modulate the ap-
pearance of each surface. Rendering a scene with such a pre-
computed illumination can be achieved through two differ-
ent approaches: each surface can be subdivided in order to
store the amount of light reaching each vertex, or a texture

map can be attached to each surface to capture the contribu-
tion of light.

The surface refinement approach is the simplest one but
presents two main limitations: the number of mesh elements
required to capture the illumination may overcome current
graphics hardware capabilities, and the geometry modifica-
tions applied to the initial surfaces make it harder to com-
bine the illumination information with other features of an
existing rendering system (e.g. environment mapping, bump
mapping, level of details, etc.)

To overcome these limitations, this paper investigates the
second approach. Our solution automatically generates a
texture atlas that will be used as texture coordinates to cap-
ture the illumination of a 3D model as a texture map. This
way, adding pre-computed illumination to an existing ren-
dering system only requires to rasterize an extra texture.

Since most modern graphics hardware allows multiple
textures (currently up to eight) to be applied in a single ren-
dering pass, combining the illumination texture map with

c© The Eurographics Association 2003.

http://www.eg.org
http://diglib.eg.org


Ray et al. / Generation of Radiosity Texture Atlas

environment or bump maps does not affect the overall per-
formance (assuming enough texture memory is available).
Moreover, several pre-computed illumination contributions
(one per set of light sources) can be combined in real-time
to simulate a dynamic illumination. Finally, avoiding the in-
troduction of extra geometry enables multi-resolution struc-
tures such as level of details or progressive meshes to share
the same texture information between all resolutions.

1.1. Previous Work

The computation of radiosity has found use within the real-
time rendering community as a mean to add visual richness
to a virtual environment, while pre-computing all diffuse
components, thereby allowing faster redisplay than comput-
ing these on the fly.

The radiosity - power per unit area [W/r2] - on a given
surface, is governed by an integral equation which can be
solved by projecting the unknown radiosity function B(x)
onto a set of basis functions φi with limited supports:

B(x) ≈ B̃(x) =
n

∑
i=1

αiφi(x)

Different sets of basis functions and resolution algorithms
have been investigated to determine the αi coefficients
(see 4, 15 for more details).

An important problem is then to find a representation of
the computed radiosity approximation B̃(x) that can be ef-
ficiently rendered using the graphics hardware. In the ra-
diosity literature, two main approaches have been studied to
tackle this problem, based respectively on mesh and texture
techniques.

Mesh based techniques

A typical solution is to refine the initial geometry into a suf-
ficient number of triangles, so that the illumination can be
stored by color per vertex and rendered using linear inter-
polation. Unfortunately, even for moderate scale scenes, the
number of required triangles is often too high to be rendered
in real-time.

Two transverse approaches have been proposed to reduce
the refinement needed to represent the illumination function:
mesh simplification and discontinuity meshing.

Mesh simplication is the process of reducing the polygon
count of a detailed model while preserving its apperance. It
is based on a cost function that attemps to maintain given
features of the model, such as its volume, crease and bound-
ary edges, or locations presenting color changes. Hoppe 8

has shown that radiosity solutions using color per vertex to
record the illumination are excellent candidates for reduction
techniques.

The other approach, introduced by Heckbert 7, is to
use discontinuity meshing during the radiosity computation.

Discontinuity meshing is an approach to meshing that at-
tempts to accurately resolve the most significant discontinu-
ities in the solution by optimal positioning of element bound-
aries.

Both techniques usually give good results at reducing the
number of triangles needed to represent the illumination
function, and may be applied for a simple rendering of a sim-
ulation result. Their main drawback however lays in the in-
troduction of extra geometry, which makes it harder to com-
bine the illumination information with other features of an
existing rendering software. In particular:

• The extra geometry may still be too costly to render, com-
pared to the initial scene.

• If attributes where attached to the initial geometry (like a
bump map or an environment map), they must be coher-
ently generated for all the new geometry.

• If the initial scene uses multi-resolution structures (like
level of details or progressive meshes), the illumination
meshes must be merged into every level.

• Combining several pre-computed illumination simula-
tions leads to merge potentially complex meshes, which
must be done by resource-intensive multi-pass rendering.

Texture based techniques

A common alternative used in the real-time rendering com-
munity is to decouple lighting from geometry by storing the
illumination information as a texture map 1, 6, 12, 3, generally
referred to as light map or illumination map. At the render-
ing stage, this texture is applied to the surface to modulate its
appearance based on the lighting information. Since modern
graphics hardware is optimized to render textured surfaces,
the illumination information can easily be added to a virtual
environment without slowing down the rendering process.
Moreover, since the initial geometry of the scene is kept un-
touched, the light maps can easily be integrated into an ex-
isting rendering software.

Basically, a light map allows to store multiple light sam-
ples per polygon, as opposed to the mesh-based approach
where only one color per vertex is allowed. Applications
of light maps have been found for interactive walkthrough
of architecural scenes, mostly composed of large polygons
(wall, floor, etc.) For smaller simple objects (table, chair,
staircase, etc.), packing methods have been introduced to
generate a set of light maps in a single texture for each object
(or group of objects) rather than for each polygon, in order
to minimize costly texture switching operations.

As shown in Figure 1, representing the illumination on
each polygon requires to use all texels that cross the polygon,
including the non-completely covered one (on the polygon
edges). Moreover, to avoid aliasing effects due to graphics
hardware bilinear filtering, extra texels need to be inserted
around the polygon. Keeping polygon adjacency in texture
space would allow pertinent texels (the ones with illumina-

c© The Eurographics Association 2003.



Ray et al. / Generation of Radiosity Texture Atlas

Texels representing illumination

Extra texels used by bilinear interpolation

Unused texels

Figure 1: Texture space optimization: one lightmap per
polygon (on the left) against one lightmap for adjacent poly-
gons (on the right).

tion information) to be shared between polygons and con-
sequently limit the wasted space. Another benefit is that (il-
lumination) texture coordinates can be shared between the
vertices of the adjacent polygons, which is a required prop-
erty for using optimization structures like triangle strips or
vertex arrays.

Few solutions have been proposed that generate a light
map for a set of adjacent polygons. Möller 11 described a
method to replace radiosity solutions for NURBS (geome-
try) models with a single texture map. Zhukov et al. 16 intro-
duced the “polypack” structure: a “polypack” is a set of ad-
jacent polygons that can be projected onto one of the world
coordinate planes without overlapping, and can be mapped
with one light map. However, these methods are restricted to
specific models that do no exhibit complex topological con-
figurations.

1.2. Our approach

We propose in this paper to use a texture atlas to store the
illumination on a polygonized 3D model. The texture atlas,
introduced by Maillot et al. 10, is a set of maps packed in a
2D square. The 3D model to be textured is partitionned into
a set of parts, referred to as charts, and each of them is pro-
vided with a parameterization. Finally, the unfolded charts
are packed in a 2D texture. In our case, each map represents
the illumination of a chart of the 3D model. This representa-
tion is the most efficient way to benefit from modern graph-
ics hardware.

Lévy et al. 9 described a solution to automatically gener-
ate a texture atlas from a triangulated surface, based on the
following contributions:

• Segmentation methods to decompose the model into
charts with natural shapes.

• A new optimization-based parameterization method:
Least Squares Conformal Maps (LSCMs).

• Two criteria to validate the unfolded charts, and associ-
ated subdivision rules for the invalid ones.

• A new packing algorithm to gather the unfolded charts in
texture space.

We propose in this paper to adapt this solution to gener-
ate radiosity texture atlases for industrial models, such as the
ones found in architecture or computer aided design (CAD).
These models are typically composed of a huge number of
triangles, including a non negligible amount of T-vertices,
non-manifold edges, sharp edges and bad shaped triangles.
In those cases, their segmentation method, based on differen-
tial geometry and Morse function analysis, would generate
too many charts.

In Section 2, we present a more robust texture atlas gener-
ation method. Then, Section 3 presents the radiosity texture
generation. The paper concludes in Section 4 with a presen-
tation of first results obtained with our method and a discus-
sion of limitations and future work in Section 5.

2. Texture Atlas Generation

We introduce in this Section a new pipeline, depicted on Fig-
ure 2, to generate a texture atlas. We use a recursive approach
in which the segmentation is only used to split the chart
when its map is invalid (i.e. not one-to-one or too distorted).
This approach allows to generate a map for non topological
discs, like surfaces including T-vertices or inner borders.

Parameterization
Map

Validation

Segmentation

OK

Problem
Surface

Packing
Texture

atlas

Figure 2: The texture atlas generation pipeline.

The choice of the LSCM parameterization method is mo-
tivated by the properties proved by its authors:

• Their conformal criterion minimizes angle deformations,
which allows to often find a valid parameterization.

• The parameterization is fast enough to be applied recur-
sively (in cooperation with the segmentation) until a valid
and low distorted map is found.

• The natural border extrapolation avoids the distortions im-
plied by the fixed border of other methods.

• The result is independent of the resolution of the mesh.
This property reduces texture swimming when applied on
a multiresolution structure such as progessive mesh.

In the remainder of this Section, we present a new condi-
tion added to the map validation, that checks a filling ratio
to minimize the waste of texture space, and we introduce a
more robust segmentation method to split charts without any
assumption on the mesh quality. The parameterization and
the packing are performed as in 9.

c© The Eurographics Association 2003.



Ray et al. / Generation of Radiosity Texture Atlas

2.1. Map validation

As explained in 9, some surfaces are too complex to be cor-
rectly parameterized. In such cases, triangles may overlap
in the parameteric space or the map could present impor-
tant variations of area. In order to avoid these problems, the
authors proposed to add a validation step to ensure the va-
lidity of the parameterization: overlappings are managed in
2D space and high area distortions are removed thanks to an
extra segmentation.

In CAD models, waste of memory also occurs due to com-
plex borders or holes in surfaces. To solve this problem, we
add a third test in the validation step to control the efficiency
of the parameterization in terms of occupancy quality.

To do so, we count the number of texels effec-
tively rendered during the rendering process of the tri-
angles needed for calculating the overlaps, and compare
it to the bounding box of the chart. Thus, the ratio

nb_texels_used
nb_texels_o f _chart′s_bounding_box gives a filling ratio that has
to be as near as possible to 1.0 in order to validate the pa-
rameterization of the current chart.

2.2. Segmentation

The segmentation is used when the map is considered in-
valid. It relaxes the continuity constraint of the mapping
function along some edges in order to ensure the validity
and the quality of the generated maps. The approaches based
on differential geometry and Morse theory used in 9 are not
able to efficiently deal with industrial models including bad
shaped triangles, like those shown in Figure 3. A simpler and
more robust solution is to recursively split the model until
each chart is correctly parameterized.

Figure 3: Example of bad shaped triangles.

The chart split is simply performed by a greedy algorithm
that grows two charts. In order to find far enough seeds, a
random vertex v is chosen, the farest vertex A from v is set
as the first seed, and the farest vertex B from A is set as the
second one.

Figure 4: Generation of a texture atlas for the seat model.

Combined with the validation step, our segmentation
method ensures to find a valid solution with a controlled dis-
tortion. As shown in Figure 4, all kinds of surfaces can be
segmented into a few charts. This algorithm is brute force,
but it has proven to be robust and suitable for our purpose.
However, as discussed in the future work of Section 4, tak-
ing the surface topology and geometry into account should
be used to improve the segmentation.

3. Radiosity Texture Generation

We briefly present in this Section how the radiosity texture is
generated based on the texture atlas computed in Section 2,
i.e. how the texture atlas of the geometry is rasterized with
the illumination function computed by the global illumina-
tion simulation.

The result of a wavelet radiosity computation is an illumi-
nation function E(u,v) → (R,G,B) defined on a local nor-
malized mapping of each mesh element. The first step of our
lightmap generation method approximates the function with
a triangulation in the parametric domain with colors stored
at the triangle corners.

The second step of our method uses theses triangles to
rasterize the illumination function on each mesh element. As
show by Figure 5, the texture atlas defines how to transform
their local (mesh element) coordinates (u,v) to global (tex-
ture atlas) coordinates.

function
piecewise linear
approximation

warping in
texture atlas

Figure 5: Rasterization of the illumination function in the
texture atlas.

c© The Eurographics Association 2003.



Ray et al. / Generation of Radiosity Texture Atlas

Figure 6: The radiosity texture atlas (left) mapped to the
seat model (right).

The radiosity texture atlas can then be mapped to the ob-
ject geometry like other existing textures, as shown by Fig-
ure 6. However during the rendering phase, the unused texels
(see Figure 1) will be melted by the graphics hardware with
the ones with illumination information. This generates two
kinds of artifact near chart boundaries:

• Aliasing due to hardware bilinear interpolation of texture
colors.

• Bad mipmap colors due to undefined colors averaging.

Our solution is to use a dilatation algorithm to avoid alias-
ing and a push-pull algorithm to enable mipmaps to be cor-
rectly generated, as done in 14.

4. First results

We have applied our radiosity texture atlas generation
method to different industrial models from architectural and
car design industries. Our experiments show that our radios-
ity textures can easily be integrated into an existing render-
ing software, and dramatically increase the realism of a vir-
tual scene without slowing down the rendering speed (as-
suming enough texture memory is available on the graphics
hardware).

Our method can handle complex illumination effects that
have been computed on an arbitrary huge amount of mesh
elements, and could not have been rendered by traditional
approaches. Figure 7 shows an architectural scene represent-
ing an immersive visualization system with colorful effects
on the floor. This model can be visualized at full speed on a
standard graphics PC.

Our method has also been used to improve realism in an
existing rendering software of a car design department. Our
method can generate radiosity texture atlas even for highly
complex meshes, as shown by Figure 8. We have been able
to integrate this new feature into their rendering software,
without conflicting with other existing features (including:
material texture, reflection map, bump map, triangle strips,
levels of details, etc.) designers are used to and do not want

Figure 7: All complex shadows in this architectural model
(right) are captured by radiosity textures (left) and do not
slow down the rendering.

Figure 8: All complex meshes (right) are mapped with a ra-
diosity texture atlas (left) combined with existing material
textures.

to loose. Furthemore, we have added the possibility to store
multiple radiosity textures per object in order to simulate dy-
namic lighting conditions.

5. Conclusion and Future Work

The solution presented in this paper allows to add pre-
computed global illumination in real-time rendering of vir-
tual scenes. Storing radiosity in textures has proven to be
both fast to render and easy to integrate into an existing ren-
dering system. However, our actual solution do not use the
available texture space in an optimal way. Two complemen-
tary approaches should be used to improve this drawback.

First, the texture atlas generation can be optimized at all
steps (parameterization, segmentation and packing):

• The LSCM method suffers from instabilities with very
bad shaped triangles (i.e. very narrow triangles) that
should be removed from the conformal energy to mini-
mize. This upgrade should limit the number of segmenta-
tions needed to find a valid and low distorted map.

• The high level of cooperation between the segmentation
and the parameterization makes the speed of the whole
process strongly dependent from the LSCM method. Us-
ing a hierarchical version of the LSCM method would
both improve speed and enable to deal with extremely
large datasets (see Figure 11).

c© The Eurographics Association 2003.



Ray et al. / Generation of Radiosity Texture Atlas

Figure 9: Fish-eye effect when improving frequencies repar-
tition using 13 on the radiosity texture atlas of Figure 8.

• The segmentation step is currently a brute force approach.
An analysis of the topological and geometrical properties
of the surface should help in finding more adapted seg-
mentation strategies for each kind of mesh. The result of
the parameterization algorithm (invalid or too distorted
map) also provides useful informations that can be used
during the segmentation step, like in 5.

• Since sharp edges lead to illumination discontinuities,
they should also create discontinuities in the texture atlas.
An efficient way to detect such edges should improve our
lightmap generation. Unfortunately, simple solutions like
SOD (Second Order Difference) fail in high curvatures
zones, and more complex curvature estimations assume
that no sharp edge exists in a given neighborhood.

The second way to minimize the amount of texture re-
quired to store the illumination is to optimize the texture
atlas in order to have a better frequency repartition in the
radiosity texture. Indeed, the illumination signal represents
both very high frequencies around shadow boundaries (like
the wheel’s shadow in Figure 8) and very low frequencies
due to light reflection (everywhere else in Figure 8). The
texture resolution required to efficiently represent high fre-
quencies leads to an oversampling of the illumination for the
rest of the chart.

Different approaches to avoid this waste of texture space
will be investigated. The chart parameterization can take the
signal into account, like in 13. This method improves fre-
quencies repartition, but leads to high distortions of the map
with a fish-eye like effect, as shown in Figure 9. A simpler
approach will be to optimize the texture atlas with an extra
segmentation to separate charts with high frequencies in or-
der to scale them in texture space, like in Figure 10. A last
optimisation step could also be used to directly optimize the
texture atlas like in 2.

Figure 10: Optimizing space with an extra segmentation of
the radiosity texture atlas of Figure 8.

Acknowledgements

This work has been supported by the CRVHP branch of the
PRST “Intelligence Logicielle”. We would like to thank the
research and development team of the Candelux software
at Inria Lorraine and VSP Technology. Thanks also to the
Graphite research team for providing the parameterization
software. CAD car model courtesy of Renault. CAD Real-
ity Center model courtesy of SGI. All illuminated models
courtesy of VSP Technology.

References

1. James R. Arvo. Backward Ray Tracing. In ACM SIG-
GRAPH ’86 Course Notes - Developments in Ray Trac-
ing, volume 12, August 1986. 2

2. Laurent Balmelli, Fausto Bernardini, and Gabriel
Taubin. Space-optimized texture maps. Com-
puter Graphics Forum (Proceeding of Eurographics),
21(3):411–420, 2002. 6

3. Rui Bastos, Michael Goslin, and Norman I. Badler. Ef-
ficient rendering of radiosity using texture and bicubic
interpolation. In 1997 Symposium on Interactive 3D
Graphics, pages 71–74. ACM SIGGRAPH, April 1997.
2

4. Michael F. Cohen and John R. Wallace. Radiosity
and Realistic Image Synthesis. Academic Press Pro-
fessional, Boston, MA, 1993. 2

5. Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe.
Geometry images. In Proceedings of the 29th annual
conference on Computer graphics and interactive tech-
niques, pages 355–361, 2002. 6

6. Paul Heckbert. Adaptive Radiosity Textures for Bidi-
rectional Ray Tracing. Computer Graphics (ACM
SIGGRAPH ’90 Proceedings), 24(4):145–154, August
1990. 2

7. Paul Heckbert. Discontinuity Meshing for Radiosity.
In Third Eurographics Workshop on Rendering, pages
203–226, Bristol, UK, May 1992. 2

c© The Eurographics Association 2003.



Ray et al. / Generation of Radiosity Texture Atlas

Figure 11: Atlas generation for an extremely large model with a hierarchical LSCM method (early result).

8. Hugues Hoppe. Progressive meshes. Computer Graph-
ics (SIGGRAPH’96 Proceedings), 30:99–108, 1996. 2

9. Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and
Jérome Maillot. Least squares conformal maps for
automatic texture atlas generation. acm Transactions
on Graphics (Proceedings of ACM SIGGRAPH 2002),
21(3):362–371, July 2002. 3, 4

10. Jérôme Maillot, Hussein Yahia, and Anne Verroust. In-
teractive texture mapping. In Proceedings of the 20th
annual conference on Computer graphics and interac-
tive techniques, pages 27–34. ACM Press, 1993. 3

11. T. Moller. Radiosity techniques for virtual reality -
faster reconstruction and support for levels of detail. In
Proceedings of WSCG 96, pages 209–216, 1996. 3

12. Karol Myszkowski and Tosiyasu L. Kunii. Texture
Mapping as an Alternative for Meshing During Walk-
through Animation. In Fifth Eurographics Workshop on
Rendering, pages 375–388, Darmstadt, Germany, June
1994. 2

13. P. Sander, S. Gortler, J. Snyder, and H. Hoppe. Signal-
specialized parametrization. Technical report, Mi-
crosoft Research, 2002. 6

14. Pedro V. Sander, John Snyder, Steven J. Gortler, and
Hugues Hoppe. Texture mapping progressive meshes.
In SIGGRAPH 2001 Conference Proceedings, August
12–17, 2001, Los Angeles, CA, pages 409–416, 2001.
5

15. Francois Sillion and Claude Puech. Radiosity and

Global Illumination. Morgan Kaufmann, San Fran-
cisco, CA, 1994. 2

16. S. Zhukov, A. Iones, and G. Kronin. Using light maps
to create realistic lighting in real-time applications. In
Proceedings of WSCG ’98, pages 464–471, 1998. 3

c© The Eurographics Association 2003.


