
EUROGRAPHICS 2003 / M. Chover, H. Hagen and D. Tost Short Presentations

© The Eurographics Association 2003.

ActiveInk

Hiroaki Tobita and Jun Rekimoto

Interaction Laboratory,
Sony Computer Science Laboratories, Inc

{tobita, rekimoto}@csl.sony.co.jp

Abstract

The ActiveInk system integrates the advantages of real world painting techniques with computer
graphics (CG) effects such as natural phenomenon animations (e.g., water, fire, snow, and clouds), attrib-
utes (e.g., rubber, cloth, and land), surface materials (e.g., texture effects, metal, and glass), and so on.
Most conventional paint systems mainly allow users to set a simple and static color. Also, they require
users to control many parameters if the user applies complex effects. However, the ActiveInk system
treats many behaviors as separate behavior inks (e.g., water, cloud, and cloth ink), so a user can add ef-
fects by selecting a behavior ink and painting it onto objects to realize CG effects. Moreover, the system
has a palette area that is similar in function to an actual painter’s palette, so the user can create a new ink
by mixing different types of behavior ink and can control the behavior in the palette area directly. In this
paper, we describe a prototype of the ActiveInk system, explain how it allows CG effects to be applied
through simple and easy manipulations, and discuss its implementation.

Keywords:
3D painting, Real-world manipulations, Behaviour ink, Palette interaction.

1. Introduction
There are now many opportunities to watch movies

and games that include Computer Graphics (CG) and
their effects. In such an environment, some people will
naturally want to create such movies and games by
themselves. Many software products and research
systems are available to support these users’ desires.
However, these systems require users to manipulate
complex GUIs and many parameters regarding 3D
geometry. As a result, people cannot create desired-3D
CG and their effects easily and rapidly.

Conventional CG creation systems require a user to
control many types of GUIs and parameters, even when
the user adds effects similar to existing effects, so the
user has to learn complex GUIs before creating a desired
scene and model. These problems are a serious barrier to
beginners who want to create 3D CG, so simpler and
easier interaction techniques are needed.

Sketch and paint systems [7,14,15,16] for 3D CG
creation that allow simple and easy manipulations have
been developed. Characteristically, these systems use
real-world techniques such as drawing and painting for
3D CG creation. In such systems, the user’s drawings
are automatically projected onto a 3D world, so
difficulties related to 3D CG, such as geometry and
parameter setting, are avoided. Thus, users of these

sketch systems can create a 3D scene and model through
2D drawing in a way that is similar to drawing a picture
on a piece of paper in the real world. Also, users of paint
systems can paint a color onto 3D modes as if 2D
painting. However, as these systems are mainly designed
for simple and rapid 3D CG creation, they are too simple
to efficiently support creation.

To realize a system that is both simple and practical
for creative activities, we sought to integrate the
advantages of real world painting techniques (e.g., an
ink metaphor and palette manipulation) with CG
creation, because integration based on real-world
activities would make the system easy to use without
requiring the user to have extensive knowledge
regarding 3D CG. The ActiveInk system has two
important features: ink metaphors to support a wide
variety of expressions, and palette manipulation to avoid
complex parameter setting. Our approach for the system
implementation is not to increase the number of GUIs
and parameters to achieve new behavior, but to enable
new behavior through the same paint interactions. Thus,
by using the ink metaphor and palette interaction, a user
can use a wide variety of behaviors by means of simple
manipulations such as selecting an ink and painting with
it, despite the use of various algorithms in the
background.

http://www.eg.org
http://diglib.eg.org

2 Tobita and Rekimoto / ActiveInk

© The Eurographics Association 2003.

Figure 1: System Overview. The ActiveInk system is
divided into three areas: the ink (1), palette (2), and
work (3) areas. Some GUIs are included.

In the ink area, the system treats a wide variety of
behaviors (e.g., such as animation, attribute, surface
material, and texture effects) as inks. Calculations of the
ink behaviors are based on a painted area. In addition,
there are similar inks to choose from in the area. For
example, a user who wants to use a cloud ink can select
from among different types of cloud ink by considering
the desired scene. Moreover, our system has a palette
area, so that a user can mix different types of ink to
create new or strange inks by painting an ink onto a
painted area, and can control the behavior conditions
(e.g., animation, color, speed, and size) within the
palette area. Since the user can use the palette area in a
way similar to how a painter uses a real palette, the user
does not have to handle complex parameters or GUIs
during the creative process. Also, the user can create
different types of scene and model by controlling the
mix color in the palette area; thus, for example, he can
create a sunset by drawing an orange cloud that is a mix
of cloud ink and orange color.

In this paper, we describe a prototype of the
ActiveInk system, explain how it allows CG effects to
be applied through simple and easy manipulations, and
discuss its implementation.

2. Previous Work
Dobashi [1] has developed a system that simulates a

realistic cloud by using cellular automata. The cloud
simulation is calculated using Boolean parameters and
visualized with metaball techniques, so a smooth and
realistic cloud animation is produced. There are systems
to produce fire simulations by using cellular automata
with random noise. In addition, there are water and cloth
simulations based on a spring model realized through
mechanical simulations [17]. There are also many
systems to produce natural phenomena and attributes
with a particle system [4,5]. The effects created by
particle systems have already been used in conventional

systems, so a wide variety of effects can be realized to
create scenes, games, and movies. With a particle
system, a user can set detailed information concerning,
for example, water flow, smoke, or hair by using the
particles [2,8,9]. Moreover, there are effective systems
that combine cellular automata with a particle system.
Muraoka’s system [3] uses such a combination
effectively to visualize snow. These systems mainly
focus on achieving realistic CG expressions, rather than
focusing on the interaction techniques.

Figure 2: Examples of using ActiveInk. A user selects
an ink and draws with the ink (cloud ink (top) and water
ink (bottom)).

There are also many sketch-based interfaces that
allow users to perform 2D manipulations of 3D creations.
Characteristically, as a user’s drawings are projected
onto a 3D world automatically, all the manipulations in
these systems are simple and similar to drawing a stroke
on a paper with a pen [14,15,16]. Actually, these
systems are effective from the viewpoint of simple
interactions, so even beginners and children can easily
interact with 3D CG. However, as there is no design
support such as template objects and scenes, users have
to consider all scenes and models themselves. Thus,
creation results depend on the users’ design skills.

In addition, 3D paint systems have been developed.
Chameleon [7] is a 3D paint system that uses an
effective means of calculation for UV mapping. Users of
this system can draw detailed strokes that are not related
to the UV position of texture. Lengyel [13] has reported
a system that can be used to realize real-time fur over
arbitrary surfaces. By using lapped textures [12], a user
can achieve real-time modification of viewing and
lighting conditions, as well as local control over hair
color, length, and direction. Paint Effects [6] is often
used to create parts of 3D CG scenes, movies, and
games. While it is also a paint-oriented tool focused on
simple and easy creation with a brush metaphor, many
parameters are needed to add detailed effects. Maya [6]
has many effects that can be used for modeling and
scene creation, but a user has to manipulate different
types of GUIs and complex parameters to create a
designed scene, even when the user adds effects of a
type similar to existing effects.

 Tobita and Rekimoto / ActiveInk 3

© The Eurographics Association 2003..

Figure 3: Behavior Inks. (1) metal ink, (2) ground
ink, (3) glass ink, (4) wood-grain ink, (5) fire ink, (6)
smoke ink, (7) sky ink, (8) blank area, (9, 10) different
water inks, (11,12) different cloud inks.

Figure 4: Ink elements. Each behavior ink is divided
into four areas: motion, color, size, and all. Support
information appears if the mouse cursor moves over an
area.

3. ActiveInk system overview
The ActiveInk system is divided into three areas: the

ink, palette, and work areas (Fig. 1). The ink area holds
both the behavior ink and normal colors. In the ink area,
each behavior ink has a specific behavior and is
animated if it supports animation. In the palette area, a
user can mix different types of ink and can control the
ink behavior. In the work area, the user can use the ink
to create the designed scene. Moreover, the ActiveInk
system includes a simple GUI to select pen attributes.

3.1. Ink Area
In the ink area, there are two types of ink: behavior

and normal color inks. Behavior ink is used to add
behaviors such as animation and attributes, and normal
color ink is used to paint with color. Both inks are used
for the palette and work areas.

By using the up and down GUI buttons at the bottom
of the ink area, a user can shift the ink area to show and
select other inks. In the ink area, the animation ink is
animated, so a user can select an ink directly through the
animation. Examples of the inks found in the ink area
are shown in Fig. 3. Inks that have the same name but a
different behavior are also included in the area. In
addition, as each ink has a default behavior that is
reflected immediately after painting, the user can
directly recognize the effects without a rendering and
preview window. Figure 2 shows examples of drawing

with cloud and water inks. The user first selects the
cloud ink in the ink area, and then paints with it in the
work area. The cloud behavior automatically appears
and is animated within the painted area (Fig. 2(top)).
Also, the user can erase a painted area by selecting the
eraser GUI. While each ink behavior has default
parameters, the user can control these parameters by
drawing in the palette area.

Each behavior ink is divided into four areas: motion,
color, size, and all (“all” means motion, color, and size),
so the user can select an ink element by selecting the
click area of an ink icon. Support information to click is
displayed if the mouse cursor moves over the area (Fig.
4). In addition, the user can add a new ink created in the
palette area as a new behavior ink by drawing the new
ink in the blank area within the ink area (Fig. 3(8)).

Our main focus is to realize unique paint interactions
that can support a wide variety of expression simply and
easily, and here we do not consider the most effective
algorithm to realize the behavior inks.

Figure 5: Palette area. A user can mix different types
of ink and control the ink condition in an area. The pal-
ette area is constructed as a 3D model.

3.2. Palette Area
The palette of the ActiveInk system allows a user to

create a new ink by mixing different types of ink, and to
control the behavior condition. Moreover, the palette
area is constructed using a 3D model and is reflective to
light and a camera, so the ink behavior is reflected in the
same way as it will be when used in the work area (Fig.
5).

3.2.1. Mixing
To mix inks, a user first applies a behavior ink in the

palette area and another ink in the painted area (Fig. 6),
so mixing manipulations are done simply by painting.
The system then calculates a new behavior that has the
features of both inks. Simple examples of mixing
between normal colors are shown in Fig. 6. The user can
also create strange inks (such as a cloud-fire or rubber-
ground ink) by mixing inks (Fig. 7). Moreover, a user
can mix behavior and normal color inks to change the
default color of a behavior ink and thus create, for
example, blue or green fire using the color parameters of
pixels.

4 Tobita and Rekimoto / ActiveInk

© The Eurographics Association 2003.

Figure 6: Mixing ink in the palette area. A user can
retrieve ink by mixing (top). Metal and cloud inks are
mixed with a normal color.

Figure 7: Examples of mixing. A user can create a
new ink by mixing different types of ink; for example, a
cloud-fire ink (1) and a rubber-ground ink (2, 3).

Figure 8: Example of diluting ink behavior. A user
can control the behavior of a painted area by mixing the
ink.

3.2.2. Diluting and Inspissating
Moreover, a user can control ink behavior by

drawing the same ink for inspissating and diluting.
Although each behavior ink has a default behavior, the
default behavior might not be adequate for the user’s
design. The system allows the user to control these
behaviors through mixing.

In our system, three mouse buttons (left, middle, and
right) are attached to ink selections in the palette area.
The left button is used for diluting, and the right button
is used for inspissating. Thus, if a user clicks an ink with
the left button and paints the ink onto a painted area, the
behaviors of the painted area are changed along with the
ink features. The middle button is used to absorb ink in
the palette area.

An example of inspissating in this way is shown in
Fig. 8. In this example, a user paints the same ink onto a
painted area to dilute size. Inspissating manipulation is
thus similar in function to the use of water and white ink
in water-color painting.

Figure 9: An example of painting a behavior ink onto
a 3D scene. A user first draws with sky and cloud inks in
the sky (2, 3, 4), and then draws with a ground ink and a
mixing ink to create the ground (5, 6).

Figure 10: A canvas creation. A canvas appears
along a user’s stroke. The user can then paint with a
behavior ink on the canvas.

3.3. Work Area
In the work area, a user can apply ink to objects by

selecting an ink from the ink area or clicking a painted
area in the palette area. The user can also change
behavior vectors by using GUIs.

3.3.1. Painting in a 3D scene
Figure 9 shows an example of painting a behavior

ink onto a simple 3D scene constructed using sky and
ground objects. The user first draws with a sky ink on
the top object and then draws with a cloud ink on that
object (Fig. 9 (1, 2)). Next, the user draws on the bottom
object using a ground ink (Fig. 9 (3, 4)). By mixing inks
between a ground ink and a normal color, the user can
add accents to the ground. A cloud ink has a default
animation, so the sky object is animated in the painted
area.

3.3.2. Add Canvas
By using sketch techniques, the user can create a

canvas for a 3D scene for painting. If the user draws a
stroke on a pre-defined object, the canvas automatically
appears along the user’s stroke (Fig. 10). The user can
then paint with a behavior ink onto the canvas. The
canvas is especially effective for painting with fire and
fog inks.

 Tobita and Rekimoto / ActiveInk 5

© The Eurographics Association 2003..

Figure 11: Paint layers. 3D models in our system
have three layers: color, mesh, and vertex (top). The
layers are calculated when a user paints (bottom).

Figure 12: Vertex shader ink. the system attaches a
patch and sets an alpha value to a non-painted area.

4. Implementation
In this section, we describe the implementation,

focusing on the ink behavior and mixing in our system.

4.1. Ink behavior
Typically, the behavior ink is divided into four types

based on the implementation: pixel, mesh, particle, and
shader inks. To combine different types of ink
implementation, the palette and work areas have three
layers: color, mesh, and vector layers. (Fig. 11 (top)).

Pixel inks are based on cellular automata and texture
effects. Behaviors of mesh inks are realized by patches
that construct a 3D model. Calculations for the vertex
shader inks depend on the patches used to construct
models. Particle inks are achieved by using a particle
system. Because these inks basically behave within a
painted area according to their default behaviors, which
depend on parameters predefined by the system, the
painted area automatically behaves in a certain way.
Behavior ink is implemented by connecting the user’s
painted area to these techniques (Fig. 11 (bottom)).

If a user draws with a vertex shader ink, the system
receives click patch information and sets the same patch
size for the clicked patch. The system then reflects the
user’s paint operation. As a non-painted area of the
patch area is set to an alpha value, a vertex shader is
reflected only within the painted area. Thus, only the
painted area is displayed in the work area (Fig. 12).

Figure 13: Example of mixing between differet types
of inks. Mixing between cloud (pixel) and water (mesh)
inks uses different layers.

Figure 14: Mixing. The mixing area has 90%
previous ink and 10% current ink features.

4.2. Mixing
In mixing, the features of both the previous and

current ink behaviors must be considered, so we use the
ink calculation results for mixing. By mixing inks that
use different types of layer (for example, by mixing
pixel and mesh inks), the system can easily create a new
ink because of the separate layers (Fig. 13).

When inks having the same features are mixed, such
as two pixel inks or two mesh inks, the ink calculation
results are used as a new ink parameter for the mixing.
In our system, the mixing area has 90% previous ink and
10% current ink features, so the final result for an area is
based on the first ink feature with the second ink feature
added. Figure 14 shows examples of mixing between
pixel-based inks.

In the same way as for mixing, the inspissating and
diluting manipulations are also based on painting.
Continuously painting with the same ink on a painted
area strengthens the ink feature (e.g., size, color, or
animation) within the painted area. Painting with the
same ink causes the system to increase the ink parameter
used for the ink calculation. As a result, the user can
directly control the parameters. As the user can select
the ink element according to the click position in an ink
area, the user can change ink behavior characteristics
such as speed, size, and color. In the same way, if the
user paints with the same ink by clicking with the right
button of the mouse, the ink parameters of the painted
area will decrease. In this case, the user can also select
ink parameters by clicking an ink area position.

6 Tobita and Rekimoto / ActiveInk

© The Eurographics Association 2003.

Figure 15: Example of painting for a 3D model. These models are painted using a simple behavior ink. In model
painting, a vertex shader ink is effective for changing the surface materials. These examples are expressed by using toon,
metal, membrane, and fur inks implemented by vertex shader.

Figure 16: Examples of painting for a 3D scene. A user can create other types of scenes by mixing inks, and so can
create a sunset cloud by mixing between a cloud ink and an orange color (2), or create a scene by using a snow ink and
mixing between a ground ink and the white color (3).

5. Examples of painting
In this section, we describe three examples of

painting activities (e.g., painting with a 3D model and a
3D scene) with the ActiveInk system.

5.1. Model
Figure 15 shows examples from the painting of a 3D

tiger model. A user can express many types of surface
by selecting behavior inks and painting them onto the
model. These examples are expressed by using toon,
metal, membrane, and fur inks implemented by vertex
shader.

5.2. Scene
Scene creations with the system are shown in Fig. 16.

A user can create other types of scenes by mixing inks.
In the example shown, the user creates a sunset cloud by
mixing between a cloud ink and an orange color. In
these examples, mixing between a sky ink and normal
color is an effective way to express other types of scene.

6. Discussion
Formal user studies regarding our system have not

yet been done. However, we have demonstrated the

system and received comments from visitors, so here we
describe the system’s possibilities and limitations in
light of the reactions and comments from such users. We
also consider applications for the system.

6.1. Advantages and limitations
Our concept of integrating real-world painting

techniques with CG creation is clearly understood by
most visitors. A primary characteristic of our system is
that it enables users to add animation and material by
simply selecting a behavior ink and painting with it –
rather than by manipulating parameters – and most users
have liked the system’s simple interactions. Also, as
each behavior ink has a default behavior in our system,
most of the users could quickly paint a pre-defined
model and add elements to a scene by using the
interactions. In addition, there have been many requests
to add particular inks that the users want to apply, such
as star, rainbow, and fountain inks. The system mainly
supports four types of ink (pixel, mesh, particle, and
shader inks) that allow users to express a wide variety of
behaviors, and it is possible to add other types of ink, so
adding new inks in a future implementation should not
be difficult. Ink-metaphor-supported behaviors have

 Tobita and Rekimoto / ActiveInk 7

© The Eurographics Association 2003..

great potential and can be enhanced by adding other
types of behavior ink to enable a wide range of
expression; for example, we could create wood, city-
scenery, sunset, and season inks. With such inks, the
necessary user manipulations would still be ink selection
and painting, thus the system manipulation will remain
simple and easy to handle.

We also received useful comments regarding the
mixing methods. In our first prototype system, the
mixing methods directly used the averaged data from
calculation results. When users expressed a desire to use
only water motions or a fire color, we developed a
system that allows users to select parameters according
to the click position in the ink area. Visitors who were
interested in creating a strange ink that was a mixture of
fire and water inks could understand the mixing methods
that would allow them to control behavior and create a
new ink after a simple demonstration. We also think it is
useful to create technical inks (e.g., diluting, inspissating,
detail, and rough inks) for mixing. In actual watercolor
painting, a painter uses white ink or water for dilution
and adds more of the same ink for inspissation, so the
system supports these manipulations as a way to free the
user from parameter setting.

There are certain limitations in our system. The
mixing techniques are not effective in terms of the
calculation speed, so more effective mixing techniques
are needed. Also, in conventional paint systems, data is
treated as simple bitmap data, so a user can use it for
other systems; however, the ActiveInk system data is
treated as an original four layers and data, so a user
cannot use it in other systems. In addition, the ink
calculations become increasingly heavy as the number
of patches rises. It is also necessary to develop a system
that supports time information for each painted area for
movie creation.

6.2. Applications
In addition, the system can be easily combined with

an augmented reality (AR) or virtual reality (VR) system
that includes many types of input and output devices.

For AR, it can be used with a wide display (e.g., a
wall-type computer display) and PDA combination [10].
In this case, the user would use a PDA palette that has
ink and palette areas, and would be able to draw on a
wide wall-type display (Fig. 17); in this way, the user
can interact with the creative space more naturally and
freely.

For VR, our system can be applied within a 3D
shared virtual world. As the capabilities of network
environments are further developed, 3D shared virtual
world systems have become more common [18,19,20].
However, the system interactions are still quite limited
(e.g., to browsing or chatting with other users). In such

environments, users would be able to paint 3D models
and construct a virtual world by using the ActiveInk
system; that is, the user would be able to change the
scene by painting and communicating with other users
through their own creation. Behavior inks are reflected
within a painted area automatically, so it is possible to
create a rich world and add elements. We think these
creative activities will encourage communication with
other users, for example in chat networks.

Figure 17: Application by combining our system
with AR system: A user can use a PDA palette that has
an ink and palette area, and can draw on a wall-type
display.

7. Conclusion and future work
The ActiveInk system is a simple and convenient

system that allows the user to apply painting techniques
in CG creation. System users can add effects by
selecting behavior inks (e.g., natural phenomena,
attributes, surface materials, and textures) from the ink
area and painting the inks onto objects in the work area.
A user can also mix different types of ink to create a
unique ink in the palette area. In addition, users can
control the animation speed and conditions by mixing
inks. As a result, a user can quickly and easily paint 3D
models and scenes through simple manipulations
without dealing with difficulties such as complex
parameters and complicated GUIs.

We plan to make the ActiveInk system compatible
with other input devices, and will enable simpler and
more direct interaction [23]. Moreover, we will improve
the ActiveInk system by adding inks such as sound inks
and additional manipulations. Much research has been
done on such sound-effects application [21,22], and we
are eager to incorporate many of the findings into a more
advanced version of the ActiveInk system. In addition,
user testing will also be necessary to further develop the
system and make it more suitable for practical use, so
we plan to have both novice users and professional
designers use the system in their creative activities.

8. Acknowledgement
We thank the members of our Sony CSL Interaction

Laboratory for their encouragement, helpful discussions,
and comments.

8 Tobita and Rekimoto / ActiveInk

© The Eurographics Association 2003.

References
 1. Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, T.

Nishita. “A Simple, Efficient Method for Realistic
Animation of Clouds”, In SIGGRAPH ‘2000 Pro-
ceedings, pp.19-28, 2000.

 2. P. Fearing. “Computer Modeling of Fallen Snow”,
In SIGGRAPH ‘2000 Proceedings, pp.37-46,
2000.

 3. K. Muraoka and N. Chiba. “A Visual Simulation
Of Melting Snow”, Journal of the Institute of Im-
age Electronics Engineers of Japan, 27(4): 327-
338, 1998.

 4. K. Sims. “Particle Animation and Rendering Us-
ing Data Parallel Computation” Computer
Graphics, Vol.24, No.4, SIGGRAPH’94, pp.405-
513 (1990).

 5. Particle system API
http://www.cs.unc.edu/~davemc/Particle

 6. Maya and Paint Effect
http://www.alias-wavefront.com

 7. T. Igarashi and D. Cosgrove. "Adaptive Unwrap-
ping for Interactive Texture Painting", Symposium
on Interactive 3D Graphics 2001, pp.209-216,
2001.

 8. R. Fedkiw, J. Stam, and H. W. Jensen. “Visual
Simulation of Smoke”, In SIGGRAPH ‘2001 Pro-
ceedings, pp.15-22, 2001.

 9. B. J. Meier. “Painterly Rendering for Animation”,
In SIGGRAPH ’96 Proceedings, pp.477-484,
1996.

 10. J. Rekimoto, "Pick-and-Drop: A Direct Manipu-
lation Technique for Multiple Computer Envi-
ronments", Proceedings of UIST'97, pp. 31-39,
1997.

 11. J. Rekimoto, "Time-Machine Computing: A
Time-centric Approach for the Information Envi-
ronment", Proceedings of UIST'99, 1999.

 12. E. Praun, A. Finkelstein, and H. Hoppe. “Lapped
Textures”, In SIGGRAPH ‘2000 Proceedings, pp.
465-470, 2000.

 13. J. Lengyel, E. Praun, A. Finkelstein, and H.
Hoppe. “Real-Time Fur over Arbitrary Surfaces”,
Symposium on Interactive 3D Graphics 2001,
pages 227-232.

 14. R. C. Zeleznik, K. P. Herndon, and J. F. Hughes.
“An Interface for Sketching 3D Curves”, In
SIGGRAPH ‘96 Proceedings, pp.163-170, 1996.

 15. J. M. Cohen, J. F. Hughes, and R. C. Zelezni,
“Harold: A World Made of Drawings”, In
NPAR2000, pp.149-157, 1999.

 16. T. Igarashi, S. Matsuoka, and H. Tanaka. “Teddy:
A sketching interface for 3D freeform design”, In
SIGGRAPH ‘99 Proceedings, pp.409-416, 1999.

 17. D. Baraff and A. Witkin “Large Steps in Cloth
Simulation”, In SIGGRAPH ‘98 Proceedings,
pp.43-54, 1998.

 18. K. Matsuda, Y. Honda, and R. Lea. Virtual Soci-
ety: Multi-user Interactive Shared Space on
WWW, Proceedings of the 6th International Con-
ference on Artificial Reality and Tele-Existence
(ICAT ’96), Tokyo Japan, pp.83-95, 1996.

 19. A. Druin, J. Stewart, D. Proft, B.B. Bederson, and
J.D. Hollan. KidPad: A Design Collaboration
between Children, Technologists, and Educators,
In Proceedings of ACM Conference on Human
Factors in Computing Systems (CHI 1997), pp.
463-470.

 20. C. Cruz-Neira, D.J. Sandin, T.A. DeFanti, R.V.
Kenyon, and J.C. Hart. "The CAVE: Audio Visual
Experience Automatic Virtual Environment,"
Communications of the ACM, Vol. 35, No. 6,
June 1992, pp. 65-72.

 21. J.F. O’Brien, P.R. Cook, and G. Essl, “Synthesiz-
ing Sounds from Physically Based Motion”, In
Siggraph 2001 Proceedings, pp. 529-536, 2001.

 22. K. Doel, P.G. Kry, and D.K. Pai, “FoleyAuto-
matic: Physically-based Sound Effects for Inter-
active Simulation and Animation, In Siggraph
2001 Proceedings, pp. 537-544, 2001.

 23. I. Poupyrev, S. Maruyama, and J. Rekimoto.
"Ambient touch: designing tactile interfaces for
handheld devices”, Proceedings of UIST2002, pp.
51-60, 2002.

