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Abstract
In this paper, we describe a method for implementing intelligent behaviour for artificial
actors in the context of interactive storytelling. We have developed a fully implemented
prototype based on the Unreal™ game engine and carried experiments with a simple
sitcom-like scenario.  We discuss the central role of artificial actors in interactive
storytelling and how real-time generation of their behaviour participates to the creation
of a dynamic storyline. We follow previous work describing the behaviour of artificial
actors through AI planning formalisms, and adopt a search-based approach to planning.
The set of all possible behaviours, accounting for many different instantiations of a basic
plot, can be represented through an AND/OR graph. Under certain formal conditions, the
solution plan can be obtained by directly searching the graph with the AO* algorithm.
We describe our implementation of AO* and how it addresses the specific issues of 3D
interactive storytelling, such as interaction with the virtual world and user intervention.
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1. Introduction
The next generation of computer games

will be increasingly based on interactive
storytelling1. These systems will require
autonomous actors with intelligent behaviour
that are fully integrated in 3D graphic
worlds. In this paper, we describe the
development of a new technique for
implementing artificial actors’ behaviour
within 3D graphic environments. These
behavioural models are intended for use in
interactive storytelling applications, i.e. next-
generation computer games, where high-
quality graphics will be matched by richer
storyline and more sophisticated character
behaviour.

There are two essential requirements for
artificial actors’ behaviour in interactive
storytelling. Firstly, these behaviours should
be fully integrated with the actor’s graphical
environment, in terms of both actor
animation and interaction with the virtual
world objects. Secondly, they should be able
to take into account user intervention and
generate adaptive behaviour in real-time.

To support our experiments, we have
designed a simple, yet fully implemented 3D

storytelling environment (using the Unreal™
game engine for graphic rendering,
animation and user interaction). The
interactive storytelling experiments we report
in this paper are based on a simple narrative,
i.e. an episode of a sitcom-like scenario. In
this episode, the principal character is
seeking to invite the main female character
on a date. This episode will unfold as a
sequence of actions that will vary according
to the character’s personalities and real-time
user interaction.

We first introduce some fundamental
concepts of interactive storytelling. In
particular, we discuss the relation between
actors’ behaviour and dynamic plot
generation. We then describe the use of
planning technologies to support artificial
actors’ behaviour in a way that
accommodates user interaction. Finally, we
present a search-based approach to plan-
based behaviour and show how it can
integrate planning with execution of low-
level actions carried in the graphic
environment.

http://www.eg.org
http://diglib.eg.org
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2. Interactive Storytelling and User
Interaction Modalities

There are many paradigms for interactive
storytelling. Bolter and Grusin2 have
suggested that in modern computer games,
users tend to have a dual role as spectator
and director. This probably reflects the fact
that the player usually controls a specific
character, indeed called “the player
character”, and observes the resulting action
at the same time. This example is a good
illustration of the trade-off between
interaction (“active user”) and storytelling
(“passive user”) that characterises computer
games, often developing interaction at the
expense of storytelling. In general terms,
interaction emphasises user intervention and
active participation, while storytelling is
more about story presentation and hence is
based on scene visualisation, character
animation, camera movements, etc. The
contradiction between interaction and
storytelling has been extensively discussed
by Mateas3, Jull4 and Young5.

Interactive storytelling, even more than
computer games, should be organised around
the notion of artificial actors as main
characters. These characters, as an aspect of
narrative, are deeply intertwined with plot5.
If the character can select between various
actions at a given stage, the character’s
choice for action actually dictates the
instantiation of the plot5. In this context, the
plot can be computed dynamically from an
integrated plan generating all possible
behaviours for the character, depending on
the specific circumstances that will result
from user intervention. Under this
assumption, the global storyline can be
implicitly compiled in the generic plan
describing all possible behaviour for the
artificial actor.

Rather than playing a role himself, the
user is interfering with the plot and altering
the storyline as it progresses by observing
the ongoing behaviours of the artificial
actors. Also, in that way, he can only
interfere with actions that have narrative
significance within the framework created by
these actions.

We can now characterise the modalities
for user interaction. It should be clear that
interacting with a character’s plan is a
higher-level task than confronting the
character physically, which is still at the

heart of many computer games. In interactive
storytelling, as the user is essentially
interfering with an agent’s activity (whether
to help it or to contrast it), we can describe
two principal modes of interaction with the
agent. The first one is to physically interfere
with the set in which the agent is evolving.
For instance, the user can interfere with
resources required by the actor’s plan, e.g.
stealing a diary that the actor plans to use to
acquire some information. The second one
would consist in influencing the actor’s
“cognitive” processes, by providing it with
information that would directly alter its
internal state. This can be implemented
through e.g. natural language instructions6,7.
In this paper, we will mainly discuss on-
stage physical intervention as the only
modality of user intervention.

3. System overview and architecture:
The prototype we describe has been

developed using the Unreal™ game engine.
The Unreal™ environment provides most of
the user interaction features required to
support user intervention in the plot, such as
navigating in the environment and interacting
with objects in the virtual set.

Figure 1: The Virtual set

Figure 2: The Virtual actors



Cavazza, Charles, Mead and Strachan / Virtual Actors’ Behaviour for 3D Interactive Storytelling

© The Eurographics Association 2001

Figure 3: Unsolved “Take her out" AND/OR graph (with terminal actions)

The Unreal editor allows the creation of 3D
environment layouts, the definition of
various virtual human characters, as well as
importing objects from various graphic
formats. Besides, there exist important on-
line resources for the game contents that can
be tuned to the specific needs of new
applications. These features, plus the high-
quality of graphic rendering account for the
growing popularity of Unreal™ in the
development of non-gaming applications8 or
as a research tool in interactive storytelling9

or Virtual Reality10.
Programming in the Unreal™

environment can adopt various solutions9.
Code redefining actors’ behaviours or global
control can be developed in C++ and
plugged into the engine. Unreal™ also
provides an integrated programming
language, UnrealScript™, which gives direct
access to the game API. UnrealScript™ is
essentially similar in structure to Java, but is
significantly slower than C++. The system
described in this paper has been implemented
as a set of template C++ classes, and is used
as a native function by UnrealScript™.  The
C++ is compiled into a dynamic link library
(DLL), which is loaded by the unreal engine
when needed.  The interface class (generated
from the UnrealScript class definition by the
Unreal compiler) contains the native member
functions, which are called from
UnrealScript, and data members that can be
accessed by both UnrealScript and C++
class.

4. Plan-based Actor Behaviour
Actor behaviour in 3D environments is

based on the conversion of action sequences
into low-level motion corresponding to
animation primitives supported by the
environment’s implementation11,12. In the
case of Unreal™, low-level behaviours are
represented by Finite-State Machines
(FSMs). One essential requirement of these
behaviours is to be integrated within the
graphic environment as a whole. A good
example of this is geometric path planning,
where the graphic environment is first
discretised into a structure on which a
heuristic search procedure, such as the A*
algorithm, can be applied13. Other important
aspects of integration with the graphic
environment include interaction with objects
in the virtual world and user interaction.

4.1. Planning Formalism
Most of previous work in behavioural

animation has focussed on low-level
behaviours, such has those controlling
motion and interaction with the agent’s
immediate physical environment. The
appropriate level of description for
interactive storytelling is a more abstract
one, such as the one provided by planning
formalisms3,5. Overall, there has been few
real uses of planning techniques in
animation, as in most cases plans tend to be
compiled into scripts or execution-only
finite-state automata14,15. The only extensive
use of planning for animation has been
described in the “AnimNL” project16, in
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which agents are executing high-level plans
using an intentional approach. This kind of
representation supports the dynamic
instantiation of generic plans to the specific
conditions into which the action has to take
place in the agent’s physical environment.
The intentional level is however too generic
for the requirements of our application, as
the actions prescribed and their expected
outcome are already part of the generic
storyline representation. The emphasis of our
work clearly stands in the narrative
representation that makes possible to use
search as a planning mechanism, rather than
in a more generic cognitive approach.

In this context, the search space
corresponding to a plan can be described by
an AND/OR graph. For instance, Figure 3
represents the example scenario we have
been implementing. The top-level goal
consists in inviting the female character
“Rachel” (“Take her out” goal). Its sub-goals
consist in acquiring information on her taste
(‘Acquire information’), isolating her from
the rest of the group in order to be able to
talk to her in private (‘Isolate her’) and
asking her out during the conversation (‘Ask
her’). Each of these sub-goals is further
decomposed until the planning operators
correspond to terminal actions in the graphic
environment (such as reading a diary,
making a phone call, talking to a character,
etc.). Technically, the search process that is
carried out by a planning system takes an
AND/OR graph and generates from it an
equivalent state-space graph17. The process
by which such a state-space graph is
normally produced is called serialisation18.
When the various goals are independent from
one another, a planner can build a solution
straightforwardly by directly searching the
AND/OR graph without the need for
serialising it18.

4.2. Solution Instantiation
Since search can provide a solution19, we

have implemented a version of the AO*
algorithm20, 21, 22, which is a heuristic search
algorithm producing the best solution graph
from an AND/OR graph representing the
problem space (there can be several solutions
to the problem, i.e. several solution
subgraphs). The main character will plan a
solution for the scenario in order to solve the
set of sub-goals and thus satisfy the main

goal. The nodes in the graph are either sub-
goals or terminal nodes. When the graph is
created at the beginning of the scenario, each
of the graph nodes is assigned a static
heuristic value. The solution sub-graph
produced depends on a heuristic search
function, which normally is used to find the
shortest/more appropriate solution. In the
case of explicit graphs of moderate size
(such as those representing generic character
plans), this actually opens interesting
perspectives for knowledge representation,
as the heuristic function can be related to
elements of the storyline, such as the main
character’s personality.  The choice made on
the heuristic values can be used to represent
a degree of “personality” for the character.
Some of the sub-goals in the graph definition
do not have the same weighting depending
on the consequences of their chosen actions
and their overall “style”. In this way, the
main character can be associated a
personality profile varying from shy and
cautious, to outgoing and confident or sly
and mischievous. The personality is part of
the internal description of the character in
Unreal™. Each of the nodes holds a different
definition of heuristics according to the pre-
defined personalities. For instance, for the
“Isolate Her” sub-goal, a shy character
would rather get rid of others characters
using a diversion than rudely interrupting the
conversation. To succeed in the same sub-
goal, a sly character would certainly prefer
attracting her by talking to her worst enemy
to, hopefully, create the right reaction.

In section 5, we give a more detailed
description of the implementation of the
AO* algorithm and its use within a specific
scenario. This description will emphasise the
interleaving of planning and terminal actions
in the graphic environment.

Figure 4: Example 1 solution graph
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Figure 5: User intervention by stealing the diary (Example 2)

5. AND/OR Graph Search for Dynamic
Behaviour

The AO* algorithm is used to find a
solution graph from the AND/OR graphs
which represents the global plan for the
scenario, i.e. the set of all possible action
sequences constituting an instance of the
scenario (Figure 3).

5.1. Search Algorithm
The AO* algorithm can be described as

comprising a top-down and a bottom-up
component. The top-down step consists in
expanding or nodes to find a solution basis,
i.e. the most promising sub-graph, using a
heuristic function. For instance, in the tree of
figure 5 (where labelled arrows describe the
graph traversal process), the “acquire
information” node can be expanded into
different sub-goals, such as “read Rachel’s
diary” or “ask a friend”. The actual choice of
sub-goal will depend on the heuristic value
of each of these sub-goals, which contains
narrative knowledge, such as the actor’s
personality. However, what ultimately
characterises a solution graph is the set of
values attached to its terminal nodes. This is
why the evaluation function of each
previously expanded node has to be revised
according to these terminal values, using a
rollback function24, which is a recursive
weighting function that aggregates individual

evaluation functions along successor nodes.
In the context of interactive storytelling, this
bottom-up step is used to take into account
action failure.

In interactive storytelling, several actors,
or the user himself, might interfere with one
agent’s plans, causing its planned actions to
fail. Hence, the story can only carry forward
if the agent has re-planning capabilities. Re-
planning consists in the ability to generate a
new plan from updated data when the current
plan becomes invalid.

One possible approach consists in re-
computing the entire solution tree once the
previous plan ceases to be valid: we will call
this off-line re-planning. The first step
consists in searching the entire AND/OR tree
with AO*, and producing a complete
solution sub-tree. The corresponding plan
will then be executed by performing the
actions attached to the terminal nodes in a
left-to-right fashion that follows the implicit
ordering of the tree. For each action, the
associated low-level behaviour will be
generated by the Unreal™ system, and the
corresponding animation sequence will take
place. Whenever an action fails, the heuristic
value for the corresponding node is set to a
“futility” value (i.e., equivalent to an infinite
cost for that terminal node), and a new
solution graph is computed. The new
solution would take into account action
failure by propagating its updated value to its
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Figure 6: Re-planning (Example 2, cont.)
parent nodes through the rollback
mechanism. In any case, failed actions
cannot be undone, as they have been played
on stage. Action failure is indeed part of the
story itself. The computational overhead of
the offline approach can become
unacceptable when several actors, each
acting according to their AO*-based plan,
have to interact with one another.

5.2. Adding Dynamic Computation
We have thus implemented a “real-time”

variant of AO* that does not compute a
complete solution but rather takes advantage
of the interleaving of planning and execution
to only compute the partial solution tree
required to carry out the next action. Like
with traditional real-time search algorithms,
such as RTA*23, the solution obtained
theoretically departs from optimality. The
reason in our case is that the real-time variant
generates the first partial solution sub-tree,
whose optimality is based on the “forward”
heuristic only (the rollback mechanism not
being fully exploited when computing a
partial solution). RTAO* finds a suitable
partial solution path (though retrospectively
is may not be the most optimal) through the
graph.  The search is a two-phase process: a
forward ‘explorative’ phase, and a rollback
phase.  These actually describe how the
planning and execution is performed.  The
forward exploration (or planning) phase will
find the most suitable path by the locally

optimal selection from the possible
descendants.  This terminates when a leaf
node containing a terminal action is reached.
The actor is then instructed to execute the
action (execution), and the result of the
execution is then propagated (via rollback)
through the selected path.  Upon action
failure, re-planning will resume the ‘forward-
explorative’ phase at a yet unexplored
descendant (if available) within the current
partial solution; conversely, success will
allow the search to progress onto the
development of another partial solution.
This process will continue until either: all
possible solutions have been exhausted and
the overall plan fails, or the actor has
successfully executed a series of terminal
actions that constitute a successful plan
instantiation.

However, the notion of optimality has to
be considered in the light of the specific
nature of the heuristic functions we have
described, which represent narrative
concepts (e.g., associated with an actor’s
personality, etc.). Departing from optimality
in this case does not result in a “poor”
solution, but rather in just another story
variant (and action failure at the level of
terminal nodes cannot be anticipated at the
search level). Further, working on explicit
AND/OR trees makes possible to design
accurate heuristics! The real-time version is
significantly more efficient than the off-line
version in terms of CPU resources, but most
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Figure 7: Partial solution for the sub-plan considered (Example 2, cont.)

importantly in terms of memory
requirements. However, improvement in
performance is only relevant for trees of
depth greater than eight. Behaviour trees in
animation have been described with an
average depth of seven, in a cognitive
approach24: however, representing even a
moderately complex storyline is likely to
involve much larger trees, which justifies our
real-time approach.

6. Example Results
As planning is interleaved with execution,
the story is incrementally constructed as a
sequence of actions. Each terminal action
(e.g. meeting someone) is broken down into
a set of defined primitive actions that the
character has to undertake. A finite state
machine represents the behaviour of
Unreal™ characters. Animation sequences
are provided for each of the characters within
the character package. The mesh animations
are looped through when needed, e.g.
walking, running, waiting, waving, looking
around, etc. The choice of these animation
sequences participates to the “dramatisation”
of the character’s action, which is required
for the user, watching the action unfolding,
to realise the narrative meaning of such
actions, and possibly interfere with them in
return.

Each of the terminal actions has to
succeed, meaning having performed with a
successful outcome, in order to complete the

sub-goal. Let us consider those actions that
make use of “narrative” objects (e.g., phone,
diary). In the first instance, the character
must reach the location where the object is
supposed to be. It needs to devise a clear
path to that object, avoiding obstacles: this is
done by using Unreal™’s built-in
mechanisms. When the object’s position is
reached, the precondition of “existence” has
to be satisfied in order for the terminal action
to be successful (in other words, this
precondition is the main executability
condition for the action). The partial solution
is developed without considering whether its
terminal actions are solvable.  Thus, if the
object is not available to the character, the
precondition is not satisfied and the
computed solution for the sub-graph is not
valid any more. The relevant node in the
graph representing the scenario must be
updated and a new solution re-computed.

Figure 4 (Example 1) shows a solution
graph where there is no user interference,
thus the top-level goal (“Take Her Out”) is
achieved without need to re-plan. In this
case, the specific action sequence only
depends on the heuristic functions that reflect
narrative elements (see above). Ross chooses
to acquire information by reading Rachel’s
diary, then phones Rachel, meeting her in the
main lobby and finally asks her out. As in
our current prototype, user intervention takes
place through interaction with the set objects,
his interventions often interfere with the
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executability conditions25 of terminal actions.
For instance, Figures 5, 6 and 7 (Example 2)
illustrate how the user can interfere with the
character plan by stealing a relevant object.
If the character is going to acquire
information on Rachel by reading the diary
(graph label 2 in graph, Figure 5), the user
can contrast that plan by stealing the diary.
This impairs the execution of the ‘Read
diary’ action (graph label 3, Figure 6), after
the character has moved to the normal diary
location. The fact that the diary is missing is
also dramatised, as evidenced on Figure 6.
As the action fails (graph labels 3 and 4,
Figure 6), the search process is resumed to
produce an alternative solution for the
‘acquire info’ node (graph label 7, Figure 6),
which is to ask one of Rachel’s friends for
such information. The Ross bot will thus
walk to another area of the set to meet
“Phoebe” (Figure 7).

7. Conclusion
The implementation of intelligent

behaviour for artificial actors in 3D graphic
worlds is faced with complex technical
problems, such as interleaving planning and
action, supporting user interaction and
representing storytelling concepts.

In this context, we claim that search-
based planning provides a practical short-
term solution in interactive storytelling and
computer games.  To some extent, we would
see AO*-based behavioural models as the
equivalent of A*-based search for path
planning, which is now almost a standard
solution for computer games applications27.
Both algorithms being a compromise
between expressivity and performance.
Further, the use of AO* opens additional
perspectives in terms of interaction and
gameplay, as its use has also been described
for adversarial search in two-player games
(where it shares some properties of SSS*28),
which would provide a basis for interference
with an actor’s plan, either from the user or
other autonomous actors.

The next step for our experiments will
consist in develop large-scale AND/OR
graphs for multiple virtual actors and
experiment with multiple interactions
between actors, which will make the
consequences of user intervention more
complex.
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