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Abstract
We present an algorithm to evaluate the field function of a soft object efficiently. Instead of using a global field
function that is defined by the sum of all local field functions, we consider only the set of local field functions that
affects a point at which we want to evaluate the field function. To find the affecting local field functions efficiently,
we exploit a data structure called interval tree based on the bounding volume of the component corresponding to
the primitives (skeletons) of a soft object. The bounding volume of each component is generated with respect to the
radius of a local field function of the component, threshold value, and the relations between the components and
other neighboring components. The proposed scheme of field function evaluation can be used in many applications
for soft objects such as modeling and rendering, especially in interactive modeling process.

1. Introduction

A soft object, also known as a blobby object or metaball, is a
kind of implicit surface that is a widely used model to repre-
sent smooth geometric objects 3; 15. A soft object is defined
by following parameters:

� Primitives:
A primitive (also known as skeleton) pi is usually a sim-
ple geometric object such as point and line segment. The
set of the primitives determines the approximate shape of
the soft object. In this paper, we mainly consider the con-
vex primitives such as points, line segments, and trian-
gles. The extension of our approach to any general type
of geometric primitive is straightforward: for example, a
concave polygon can be subdivided into a set of convex
polygons, and a curve can be approximated by a piece-
wise linear curve.

� Field function:
For each primitive pi, a local field function fi is given,
which maps a point in R3 into a value in [0..1]. Let pi

be a point primitive. The value of the local field function
fi at an arbitrary point v = (x;y; z) is computed by fi(d),
d � 0, where d is a Euclidean distance between v and pi.
Usually, fi(d) is a smoothly decreasing function (see Fig-

ure 1). The sum of all local field functions included in a
soft object, f = ∑ fi, is called a global field function (sim-
ply field function) of the soft object.

� Threshold:
A global constant T is given as a threshold value of a soft
object. The surface of a soft object consisting of n primi-
tives is defined by the set of points v satisfying

f (v) =
n

∑
i=1

fi(di) = T; (1)

where di is a distance between v and pi.
� Radius:

The local field function in Figure 1(a) has a positive value
for infinite domain (d � 0), which can influences a point
located very far from a primitive. To reduce the compu-
tational cost, a local field function like a Figure 1(b) is
suggested, by which the influence of the local field func-
tion can be restricted to the domain, 0 � d < r.

We denote a three-tuple si = (pi; fi; ri) a component of a soft
object. A soft object, s, is specified by a set of n components
fsi = (pi; fi; ri)g, i = 1; :::;n, and a threshold value T .

Many algorithms such as polygonization and ray tracing
of a soft object include a number of evaluations of the field
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Figure 1: Field functions with (a) infinite domain, and (b)
finite domain

function of the soft object. Thus, speeding up the evalua-
tion of the field function of a soft object has been considered
as an important problem 15. Let us assume that we want to
evaluate the global field function f (v) at an arbitrary point v.
When we evaluate f (v) using Equation (1), we do not have
to consider all local field functions fi, since fi(di) vanishes,
if di is greater than the radius ri. Thus, finding a set of prim-
itives (called influencing primitives), whose distances from
a given point v are less than the corresponding radii of the
primitives, is a key problem of the fast evaluation of a field
function.

In this paper, we suggest an efficient method to find the
primitives that influence a given point using interval tree.
The interval tree is a kind of binary search tree whose inter-
nal nodes store boundary values of the bounding volumes of
the components and leaf nodes store a list of primitives that
influence the corresponding interval. The bounding volume
of a component is computed by considering the amount of
the offset from the primitive in the component. The offset is
determined to build compact bounding volumes in terms of
the radius of the component and the relations between the
neighboring components and the considering component. If
the distance between a point and a primitive is less than the
offset, then the point lies inside the bounding volume of the
corresponding component of the primitive, while the inverse
does not hold. Using the interval tree, the procedure of find-
ing the influencing primitives for a point can be implemented
by simple one dimensional searches in the interval tree. All
distance computations are transferred to the preprocessing
step that computes an interval tree, and thus, we do not have
to compute the distance between a point and a skeleton in
the process of the evaluation of a field function.

By using the interval tree, we can reduce the execution
time of many applications such as polygonization and ren-
dering of soft objects. In Section 6, we demonstrate the effect
of our method by applying the method to the polygonization
of soft objects. By the comparisons among our method, the
simple evaluation method without any data structure such as
interval tree, and other methods 15 for speeding up the eval-

uation of the field function, the efficiency of our method is
proved.

This paper is organized as follows. In Section 2, the re-
searches on the field function of a soft object, the methods
of the efficient evaluation of field function, and the bounding
volumes in collision detection and ray tracing are reviewed.
The algorithm for computing the bounding volume of a com-
ponent is proposed in Section 3 and the algorithm for build-
ing and traversing an interval tree is illustrated in Section 4.
In Section 6, implementation details and performance com-
parison with the conventional method for field function eval-
uation are provided. Finally, we conclude the paper and sug-
gest some future works in Section 7.

2. Previous Work

In 1982, Blinn proposed a soft object, a new modeling
paradigm using distribution function 3. The distribution
function, known as field function or potential function, has
played a major role in modeling and rendering models rep-
resented using soft objects. The first field function of a soft
object, proposed by Blinn 3, is defined as follows:

f (d) =
1
2

exp(α�4αd2
);

where d is the distance between a vertex and a primitive and
α is a hardness factor that controls the slope of the function
at d = 0:5. By this function, a vertex located very far from a
primitive is still influenced by the primitive.

The inefficiency of the Blinn’s distribution function of in-
finite domain was improved by the field function having fi-
nite domain, proposed by Nishimura et al. 13. Nishimura’s
field function is defined by

f (d) = (d < 1) ? (d <
1
3
) ?

4
3
�4d2 : 2(1�d)2 : 0;

where d is a normalized distance by the radius of the prim-
itive. Using this function, the function evaluations for the
vertices whose normalized distance is greater than 1 are
avoided. Note that the function is C2 continuous everywhere.

Nishimura’s function, however, possess inefficiency by
computing square roots in its formula. Improved field func-
tions in polygonal formula are proposed by Wyvill et al. 15

and Murakama 12. These finite field functions, however, do
not include the hardness factor that controls the slop of the
function. Gascuel 5, Kacic-Alesic and Wyvill 8, and Blanc
and Schlick 2 proposed finite field functions with the hard-
ness factor.

Wyvill et al. 15 also presented some techniques with data
structures for the fast evaluation of a field function. In their
method, the volume of space of the whole scene is divided
into cubes of fixed size. Each of these cubes is considered as
an entry of a hash table, and the entry has a list of pointers
to the primitives that influence the cube. Since the method
decomposes a space, the method can be considered as one of
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image-space approaches. When a field function is evaluated
at a given point p, the cube containing p can be found easily
from the coordinates of p (they explained this in terms of
hashing), and thus, we can easily access to the primitives
that influence p.

Nevertheless, Wyvill et al.’s method has some disadvan-
tages. First, it is not easy to determine the optimal size of
a cube. Especially, when a number of components lie on a
very small region, the components form a cluster in the hash
table. Consequently, the method cannot effectively solve the
problem of the fast evaluation of field function 15. If the size
of a cube is too small, we need much amount of storages and
the construction of the hash table structure takes long time.
Second, the construction of the hash table structure is not
easy especially for the primitives that are not points. For ex-
ample, it is not easy to check exactly whether a line segment
primitive influence a cube or not. The exact influence field
of a line segment primitive may be the volume of a cylinder
with arbitrary orientation. The intersection check between
the cylinder and the cube may be cumbersome in the con-
struction process. Thus, a simple approximation (such as
axis-parallel hexahedron or sphere) of the exact influence
field is often used. Third, Wyvill et al. did not consider the
dynamic modification of the data structure. The insertion of
a component is straightforward. However, if a component
needs to be deleted from a soft object, the whole hash table
must be scanned in the worst case.

Being compared with the Wyvill et al.’s method, our
method using the interval tree is an object-space approach.
Instead of decomposing the space, we build an interval tree
based on the bounding volume of each component. This
object-space based approach guarantees that the method can
effectively handle the situation where many components
form a cluster. In our method, the bounding volume can be
defined according to more than 3 principle axes. Thus, the
bounding volumes can be more exact approximations of the
exact influencing fields. Furthermore, we seriously consider
the dynamic update of tree interval tree to support the in-
teractive modeling process. The insertion/deletion of a com-
ponent into/from an interval tree can be easily implemented
using simple algorithms for the binary search tree. The bal-
ancing based on AVL tree always maintain the interval tree
to have an optimal height without any serious computation.

Researchers on collision detection and ray tracing have
been traced a slightly different problem:

“Given two sets of objects, find intersecting objects
without testing all pairs of the objects.”

Among the various methods proposed to solve the prob-
lem, a bounding volume hierarchy tree 1; 7; 6 is known to pro-
vide an efficient solution. A bounding volume hierarchy tree
is a tree whose leaf node stores an individual object and its

bounding volume. A parent node of the tree stores a bound-
ing volume of the bounding volumes of its child nodes.
The bounding volume hierarchy tree can be efficiently used
specially in interactive applications to detect the collisions
among the moving objects. The hierarchy of the tree can be
used the level of collision detection with respect to the speed
of the execution of the application.

3. Computing Bounding Volumes of an Object

3.1. Backgrounds

Various schemes for computing bounding volumes of geo-
metric objects have been proposed in collision detection and
ray tracing 1; 7; 6. The proposed bounding volumes are clas-
sified according to the complexity of the bounding volume
geometry. The bounding volumes defined by some simple
geometries, such as bounding sphere or axis-aligned bound-
ing box, provide easy computation and fast comparison,
while they are bad approximations by leaving large empty
corners. On the contrary, bounding volumes using complex
geometries, such as oriented bounding box or convex hull
are tighter approximations than the simple ones, while they
show poor performance in construction and checking inter-
sections. To provide the benefits of the both types of the
schemes, a hybrid approach, known as bounding slab 9, fi-
nite direction hull 16, or k-DOPs 10, have been proposed.
The methods of this scheme computes tighter approxima-
tions than the simple ones and provide more efficient per-
formance than the complex ones. In this paper, we build the
bounding volumes of the components of a soft object based
on this hybrid approach.

3.2. Definition of the bounding volume

For a component si = (pi; fi; ri) of a soft object, k bound-
ing directions are defined to compute the bounding volume
of the component. In this paper, we use k = 3 or k = 7 for
bounding directions. When k = 3, the three directions are
(1;0;0), (0;1;0), and (0;0;1). When k = 7, the seven di-
rections are (1;0;0), (0;1;0), (0;0;1), (1;1;1), (1;�1;1),
(�1;�1;1), and (�1;1;1). In the case of k= 3, the resulting
bounding volume coinsides with the axis-aligned bounding
box. For each bounding direction ~d j , the two planes Pi

j+ and

Pi
j� that are orthogonal to the direction and circumscribed

out the bounding volume are defined by

Pi
j+ = fx j ~d j � x = ṽmax � ~d j +δi

j+g;

i
j� = fx j ~d j � x = ṽmin � ~d j �δi

j�g;

where ṽmax and ṽmin are vertices on pi (the primitive of si)
whose inner product with ~d j is maximum and minimum, re-
spectively. Figure 2 shows an example of the computation
of Pi

j+ and Pi
j� for various primitives with the definitions of

ṽmin and ṽmax.

δi
j+ and δi

j� are offsets that indicate the range of influence
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of si to the direction of ~d j+ and ~d j�, respectively (see next
subsection for the definition of offset). Consequently, the in-
tersection of two halfspaces that enclose the object, denoted
as hi

j , is defined by

hi
j = fx j ṽmin � ~d j �δi

j� � ~d j � x � ṽmax � ~d j +δi
j+g:

Two values bi
j� = ṽmin � ~d j �δi

j� and bi
j+ = ṽmax � ~d j +δi

j+

are called the bounding values of hi
j. Therefore, a bounding

volume of the primitive pi, denoted as Hi, using k bounding
directions are defined as follows:

Hi
=

k\

j=1

hi
j:

Suppose we test the intersection between the bounding
volumes of two components, sn and sm. The correspond-
ing bounding volumes, Hn and Hm are intersected, if hn

j and
hm

j , are intersected, for all j = 1;2; :::;k. Note that the inter-
section between hn

j and hm
j can be tested by comparing the

boundary values.

3.3. Calculation of the offset

δi
j+ and δi

j� are offsets of a component si in direction of ~d j

and �~d j, respectively. Basically, since we define the bound-
ing volume to find influencing primitives, the offset is to be
defined as ri, the radius of si. In many cases, however, the
actual range of influence of si becomes r0i = f�1

i (T ), which
is the actual radius of si. Note that fi(r

0
i ) = T is a boundary

of influence. Figure 3 compares r0i ’s for various T . Note that
r0i coincides with ri at T = 0.

To build a compact bounding volume of an object, we
compute the offset according to the actual range of influ-
ence of the object. Since the actual range of influence varies

(b) Line segment

pn

pm

~pnm

(c) Triangle

pn

pm

~pnm

(a) Point

pn pm

~pnm

Figure 4: The vector ~pnm of the shortest distance between
pn and pm for various types of primitives

according to the threshold value and the relations between
neighboring objects, we define the relation between two soft
objects before defining the offset. Let ~pnm denote a vector
emanating from a point on a primitive pn to a point on pm,
where k~pnmk, the magnitude of ~pnm, is the shortest distance
between pn and pm. Since we assume that the primitives are
convex, at least one of the two end points of ~pnm is a vertex
of a primitive (see Figure 4). The relation between two com-
ponents sn and sm can be classified according to ~pnm, rn and
r0m as follows:

1. sn is related to sm, if k~pnmk � rn + r0m.
2. sn and sm are disjoint, otherwise.

Figure 5 shows the classification of types according to the
radii of the components.

Initially, the offsets in all bounding directions of a compo-
nent sn are set to the actual radius r0n of the object. Then, all
components are tested pairwisely to check whether they are
related or not. For two related objects sn and sm, δn

j+, the off-

set of sn in the bounding direction ~d j , is set to rn, if sm is in

the direction of ~d j by testing ~d j �~pnm > 0. Otherwise, δi
j� is

set to rn. The algorithm that computes offsets for all objects
and bounding directions are illustrated in Figure 6. In Figure
5, various shapes of bounding volumes determined from the
offsets are illustrated.

4. Interval Tree

4.1. Definition of interval tree

Let s be a soft object consisting of N components si, i =
1; :::;N. The bounding volumes of of each component si is

Hi
=

k\

j=1

hi
j;

where k is the number of bounding directions. As we have
referred to in Section 3.2, the two bounding values of hi

j are

denoted by bi
j� and bi

j+, respectively.

For the soft object s, we construct k interval trees each
of which corresponds to a single bounding direction. Let us
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Figure 5: Relations of two components sn and sm according
to their default and actual radii, and the shapes of bounding
volumes Hn and Hm

consider an interval tree ITj of a specific direction j such
that 1 � j � k. There are 2N boundary values bi

j� and bi
j+

of hi
j , for all i = 1; :::;N. For simplicity, we assume that all

bi
j� and bi

j+, for i = 1; :::;N, are distinguished, and vq’s,
q = 1; :::;2N, denote a sorted list in ascending order of the
boundary values. Then, ITj is defined as follows:

1. The subset of ITj including all internal (non-leaf) nodes
and connecting edges between them is a one dimen-
sional binary search tree. Thus, each internal node stores
a bounding value vq, 1 � q � 2N.

2. Let l be a leaf node, and the parent of l be denoted by p(l)
storing a value vq. The leaf node l has a set of influencing
components denoted by c(l) defined as follows:

a. When l is a left child of p(l),

i. If q = 1, c(l) = ;.
ii. Otherwise, c(l) is a set of the components influenc-

ing the region (vq�1;vq).

b. When l is a right child of p(l),

i. If q = 2N, c(l) = ;.
ii. Otherwise, c(l) is a set of the components influenc-

ing the region (vq;vq+1).

The data structure of an internal node is described in Figure
7. The value field stores the bounding value of the node.

Compute offset ( Soft objects s1; s2; :::; sN,

bounding directions ~d1; :::; ~dk )
{

for ( n = 1 to N ) {
for ( j = 1 to k ) {

δn
j+ ( r0n;

δn
j� ( r0n;

}
}
for ( n = 1 to N ) {

for ( m = 1 to N ) {
if ( n 6= m ) {

~pnm ( the shortest
distance vector from pn to pm;

if ( k~pnmk � rn + r0m ) {
for ( j = 1 to k ) {

if ( ~pnm � ~d j > 0 )
δi

j+ ( rn;
else

δi
j� ( rn;

}
}

}
}

}
}

Figure 6: Algorithm for computing offsets

The reference_count field, which is initialized with 1,
of a node stores the number of times of appearing the bound-
ary value vq in the list of vq’s, q = 1; :::;2N. Thus, we do not
have 2N internal nodes when any two or more boundary val-
ues are the same. If a left (resp. right ) child of an in-
ternal node is a leaf node, larray (resp. rarray) pointer
points to a leaf node, i.e., an array of component pointers.
Thus, in this data structure, a leaf node l represents a set c(l)
directly. In Figure 4.1 an example interval tree from 7 ob-
jects is illustrated. In the figure, a component is indexed as si

instead of si for the convenience of notation. Also, for sim-
plicity, boundary values are denoted by bi

m and bi
M instead

of bi
j� and bi

j+, respectively.

4.2. Building an Interval Tree

The algorithm for building an interval tree is composed of
three phases: i) sorting all boundary values, ii) building a
binary search tree from the sorted list of the boundary val-
ues, and iii) inserting each component to the leaf nodes that
correspond to the intervals where the component influence.
To build a balanced interval tree, the median value of the
boundary values are selected and inserted to the interval tree
recursively. When a value is inserted, if the value field of
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struct Node
{

float value;
int reference_count;
Node *left, *right;
Object **larray, **rarray;

}

Figure 7: Definition of an internal node

(a) 7 primitives and minimum and maximum values of one bounding volume
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captionAn example of interval tree

Algorithm Insert_Object ( Object si,
Node *nd )

{
if ( si:bmin < nd.value ) {

if ( nd.larray = NULL )
Insert_Object ( si, nd.left );
else

nd.larray ( si;
}
if ( si:bmax > nd.value ) {

if ( nd.rarray = NULL )
Insert_Object ( si, nd.right );

else
nd.rarray ( si;

}
}

Figure 8: Algorithm for inserting an object into an in-
terval tree

the visited node is identical to the value, then the inserting
process stops by increasing the reference_count field
of the node by 1. An interval tree from N components with
2N distinguished boundary values has 2N internal nodes and
2N+1 leaf nodes. Note that the number of leaf nodes, which
is the number of arrays, coincide with the number of inter-
vals that divide space with 2N values. The correspondence
between the interval and the leaf node must be maintained
for all modifications of the interval tree.

The rule of inserting a component si having two boundary
values bi

j� and bi
j+ for a bounding direction j to an inter-

val tree ITj (the third phase of the building algorithm) is as
follows. At an internal node having a value vq, bi

j� and

bi
j+ are compared with vq, and one of the following actions

is taken.

� If bi
j� < bi

j+ � vq, then si is propagated down to the
left child of the node.

� If bi
j+ > bi

j� � vq, then si is propagated down to the
right child of the node.

� If bi
j� < vq < bi

j+, si is propagated down to the both of
left child and right child.

After reaching a leaf node, the pointer to si is inserted to the
array in the leaf node. An algorithm of inserting a component
to an interval tree is illustrated in Figure 8.

4.3. Field function evaluation using interval trees

When a field function is evaluated at a point p, p is projected
onto each bounding direction ~d j . Then, the one dimensional
projected coordinates, ~d j � p, traverse down the correspond-
ing interval tree ITj to find an interval where the coordi-
nates belong. An algorithm of searching the set of influenc-
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Algorithm Search_IntervalTree
( float v j, Node *nd )

{
if ( v j � nd.value ) {

if ( nd.larray 6= NULL )
return nd.larray;

else
Search_IntervalTree ( v j, nd.left );

}
else {

if ( nd.rarray 6= NULL )
return nd.rarray;

else
Search_IntervalTree ( v j, nd.right );

}
}

Algorithm Search_List ( Vertex ṽ )
{
List l1, l2, ..., lk;
IntervalTree IT1, IT2, ..., ITk;

for ( j = 1 to k ) {

l j ( Search_IntervalTree ( ṽ � ~d j, ITj );
}
return Intersection ( l1, l2, ..., lk );

}

Figure 9: Algorithm for searching an object into an in-
terval tree

ing primitives for the projected coordinates is illustrated in
Figure 9. For k bounding directions, k arrays are found, and
the intersection of these k arrays are the final set of influenc-
ing primitives for the point.

4.4. Analysis of building and searching algorithms

An interval tree has 2N internal nodes and 2N�1 leaf nodes.
The size of the array in each leaf node can be N in the worst
case. Thus, the interval tree takes 2N+(2N�1)N = O(N2

)

storage. The construction time of an interval tree for N
components is measured by separating the time for build-
ing the binary search tree (the first and second phases) and
time for inserting the components into the arrays in the leaf
nodes (the third phase). The first and second phases takes
O(N logN). The third phase is equivalent to the one dimen-
sional range searching problem: “given a set of discrete val-
ues and an interval, report all values that fall within the in-
terval." The running time of the range searching problem is
output-dependent. That is, if a component is inserted to α ar-
rays, the insertion takes O(logN+α) 4. Therefore, inserting
all N components to the interval tree takes O(N logN) and
O(N2

) time in the best and worst cases, respectively. In the

evaluation of a field function, the interval tree that is com-
pletely balanced is traversed from the root to a leaf node,
which takes O(logN) time.

5. Dynamic Update of Interval Tree

In interactive modeling process of a soft object, the compo-
nents are inserted, deleted or editted dynamically. In such
cases, the interval tree should be updated appropriately. We
will consider the following topics for dynamic update of an
interval tree:

� Insertion of a new component into an interval tree,
� Deletion of an existing component from an interval tree,
� Balancing an interval tree.

Note that the edition of a component can be implemented by
the combination of a deletion and an insertion.

5.1. Inserting a new component

When a new component is inserted into an interval tree, the
two boundary values of the component are inserted into the
tree as two internal nodes. We can insert a bounding value
using the conventional binary search algorithm utilized in
the previous section. Let i be a new internal node that stores
the inserted bounding value is created. Assume that i will be
inserted as the left child of an existing node p that currently
has a left child l(p), where l(p) is a leaf node. Then, the
following steps are applied to insert i:

1. Disconnect l(p) from p.
2. Make i be the left child of p.
3. Duplicate l(p). Let l0(p) be a copy of l(p).
4. Make l(p) and l0(p) be the left and right child of i, re-

spectively.

For the other case, when i will be the right child of p, the
similar steps can be used. After two new internal nodes are
created, the component itself is inserted to the components
arrays in the leaf nodes of the interval tree using the algo-
rithm in Figure 8. Figure 10 shows an interval tree after the
insertion of new component s7. The original interval tree is
shown in Figure 4.1.

5.2. Deleting a component

When a component is deleted from a interval tree, first, the
component pointers stored in the arrays of the leaf nodes are
deleted. To delete the component pointers in the arrays, we
apply an algorithm that is similar to the insertion algorithm
in Figure 8. The only difference is that on reaching an array,
the component pointer is deleted instead of inserted. Next,
we traverse the tree to delete the internal nodes correspond-
ing to two bounding values of the component. When we
reach an internal node i of a bounding value, if i has ref-
erence_count> 1, then the traversal stops by decreasing
the reference_count by 1. Otherwise, i is deleted and
the tree is updated as follows.
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(a) New object s
7 is inserted
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(b) Interval tree built after inserting s
7
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Figure 10: An example of inserting new object

1. If both of two children l(i) and r(i) of i are leaf nodes,

a. Merge the two arrays of component pointers in l(i)
and r(i) and make a single leaf node nl storing the
merged array.

b. Substitute nl for i.
c. Purge i.

2. Otherwise,

a. If l(i) is not a leaf node,

i. Find an internal node j having the largest value in
the left subtree of i.

ii. Copy the value and the reference count of j into i.
iii. If one of l( j) and r( j) is an internal node k, substi-

tute k for j.
iv. If both l( j) and r( j) are leaf nodes, make a merged

leaf node nl as in Step 1(a), and substitute nl for j.
v. Purge j.

b. Otherwise, take a similar step to Step 2(a) with j = the
internal node of the smallest value in the right subtree
of i.

Note that in Step 2-(a)-iii, both of l( j) and r( j) cannot be
internal nodes at the same time, since j must be the largest

(a) Object s
5 is deleted
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(b) Interval tree after deleting s
5
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Figure 11: An example of deleting an object

value in the left subtree of i. In Step 2-(a)-i, we only copy the
value and the reference count of j to i. An elegant thing is
that we do not have to modify the original child of the node
i, even when the child is a leaf node. This is because we
already pick out the component pointers to the deleted com-
ponent before the deletion of internal nodes. That is, when
both of the right child of i and j are leaf nodes, the arrays of
the component pointers in the two leaf nodes are already the
same after picking out the component pointers.

The above description shows that the correspondence be-
tween arrays and intervals are maintained after deleting a
component from the tree. In Figure 11, we illustrate how an
object, for example s5, is deleted from the tree. Note that
after deleting s5, the interval tree becomes unbalanced.

5.3. Maintaining balance of the interval tree

Even though we built an initial balanced interval tree by in-
serting the median of the bounding values recursively, the
dynamic modification may break the balance of the tree. We
apply single rotation and double rotation, which are the tech-
niques used in the AVL tree14. In Figure 11, since the unbal-
ance is propagated in the alternating direction (b7

m is the right
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(a) Object s
8 is inserted
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(b) Left part of the interval tree after inserting s
8
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Figure 12: After inserting object s8, the tree becomes unbal-
anced

child of b6
m and b6

m is the left child of b4
M), a double rotation

is applied. After inserting an object s8 to the resulting tree,
another type of unbalance appears (See Figure 12). In this
case, since the unbalance is propagated in the identical di-
rection (b8

m is the left child of b7
m and b7

m is the left child of
b0

M), single rotation is applied. Through these methods, the
balance of the interval tree is maintained.

5.4. Analysis of update algorithms

As well known, the balancing of AVL tree takes constant
time 14. By the balancing, we can always maintain the the
height of an interval tree as O(logN), where N is the num-
ber of components. The running time of the insertion algo-
rithm depends on the time of the algorithm described in Fig-
ure 8 for inserting a component pointers into the appropriate
leaf nodes. As we referred to in Section 4.4, the algorithm
takes O(logN+N) =O(N) times in the worst case. The run-
ning time of the deletion algorithm is O(logN), which is the
same as that of the conventional deletion algorithm in binary
search tree 14.

6. Implementation and Results

The proposed algorithm in this paper is implemented at a PC
environment with Pentium-III CPU 500 MHz and 256 MB
memories. The software environment is Visual C++ with
MFC and OpenGL libraries. To measure the performance of
the proposed algorithm to that of the conventional ones, we
apply the algorithm for polygonizing soft objects. Marching
cube-based conventional algorithm 11 is implemented for the
polygonization. The marching cube method polygonizes the
soft objects by decomposing space into small-sized cells and
generating intersecting polygons with the cells and the ob-
jects. We designed two examples, each of which is composed
of point skeletons and line segment skeletons, respectively.
The first example is a smooth object composed of two loops.
Each loop is approximated by line segments, which are ap-
plied as the primitives of soft objects. From this example, we
can conclude that even though the number of generated poly-
gons are nearly same, the number of primitives is an affect-
ing factor for the performance. The measured performance
and the statistics for the influencing primitives are illustrated
in 13. Notice that the speed up of the proposed algorithm
is due to the reduced number of influencing primitives. The
second example is a mesh of point skeletons. In this exam-
ple, we fix the number of primitives and change the number
of generated polygons by controlling resolution of the cells.
It is natural that the increase of the number of cells indicates
the increase of the computation time. In this case, the com-
putation time increases much faster for the conventional al-
gorithms. Some of the blank column is due to the low perfor-
mance of the platform, which prohibited us from achieving
results. The shape of the soft object with 1210 point skele-
tons are suggested in accompanying file 1210.jpg. With the
picture, we present two movie files to show the result of this
paper. The first file, named example1.mpeg, compares the
performance of polygonization using interval tree with the
hash table method proposed by Wyvill 15. The second file,
named example2.mpeg, shows an interactive modeling en-
vironment of soft objects, which are polygonized with the
proposed method.

7. Conclusion and Future Work

In this paper, we proposed a new algorithm for evaluating
field functions of soft objects. To remove the unnecessary
distance computations of conventional field functions, we
built the bounding volumes of the objects and decomposed
space into intervals by designing interval tree. Using this
tree, a set of influencing primitives for a vertex is found with-
out computing the distances between the vertex and all prim-
itives. We applied this new field function in polygonizing
soft objects. The conventional marching cube-based poly-
gonization method using the proposed field function shows
faster and more consistent response time than that using the
conventional field function.

We are investigating the problem of the localized polygo-
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No. of No. of type No. of Time
objects cells of polygons (sec)

function

128 Old 58994 81.658
New 58994 14.300

121 64 Old 14242 20.560
New 14242 2.944

32 Old 3162 5.207
New 3162 0.912

128 Old 294234 2054.980
New 294234 110.188

605 64 Old 68450 508.811
New 68450 17.970

32 Old 12920 107.524
New 12920 15.102

128 Old
New 649422 110.188

1210 64 Old
New 149758 79.525

32 Old 28306 513.288
New 28306 25.507

Figure 13: Comparison of performance with example pre-
sented in 1210.jpb

nization using interval tree, which is the application of our
work suggested in this paper. When a soft object is updated,
the polygonization of the soft object must be recomputed.
Since the area where the field function changes can be clas-
sified using interval tree, we can repolygonize the soft object
only in that classified area without repolygonizing the whole
object. With this extension, the interval tree can be one of
the solutions to the interactive modeling environment using
soft objects.
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