
EUROGRAPHICS ’99 / M. A. Alberti, G. Gallo, I. Jelinek Short Papers and Demos

A Global Routing Mechanism for Modular VRML-Worlds

S. Mader

Department Visualization and Interaction Techniques,
Fraunhofer-IGD, Division Rostock, Germany

Abstract
With the increasing complexity of virtual worlds VRML97 reveals its lack of native support for logical modular-
ization of these worlds. Though the inherent mechanisms as PROTO-typing and Inlining allow us to partition our
worlds into several files, the restriction to file-limited namespaces makes an event-routing for complex interactions
between different modules a rather difficult task. In this paper we present an easy-to-use method for event-based
communication across modular VRML scenes. Based on VRML´s event model, this solution goes conform with the
VRML97 standard ISO/IEC 14772-1:19971 . In order to show its ability to support the implementation of highly
interactive and complex VRML-worlds we demonstrate its application in a current project from the fields of virtual
heritage.

1. Motivation

The Virtual Dunhuang Art Cave project2; 3; 4 is a cooperation
project between Zhejiang University, Hangzhou, China and
the Fraunhofer Institute for Computer Graphics, Germany. It
focuses on the development of a virtual heritage system sup-
porting the preservation, restoration, promotion and replica-
tion of Dunhuang Art. One of the early results of this project
is the Dunhuang InfoWeb5, a web-based information system
which presents Dunhuang Art within a multimedia frame-
work. Essential elements of this system are 3-dimensional
models of selected caves implemented using VRML97.

In its final stage the information system is intended to fea-
ture about 25 to 30 models from a total of 570 Dunhuang
caves. Navigation, interaction and presentation schemes will
be similar for all models. Due to this redundancy, mono-
lithical implementations introduce a considerable transmis-
sion overhead, loading the same schemes again for each cave
model. The separation of those common schemes from cave-
specific content as geometry, viewpoints and lighting into
different logical modules obviously yields several advan-
tages:

reusability at runtime: Commonly used modules need to
be transmitted only once. Their cached instances can be
used to render subsequent cave models.

reusability at authoring stage: Once implemented, mod-
ules can be inlined a number of times.

efficient implementation and maintenance: Easy exten-

sion for additional cave models or interaction tasks. The
logical structure allows the splitting of authoring tasks
into well-defined subtasks.

According to the VRML97 specification1 there are two
different mechanisms of dividing contents into separate
files — the use of Inline{}–nodes and the PROTO–/
EXTERNPROTO–mechanism. Whereas the standard inlining
does not provide access from the external scene to the inlined
content, PROTO–types allow the definition of generic inter-
faces to their content. Interaction with the content of proto-
types can be achieved by routing typed events to and from
suitable event-slots of the interface.

However, since VRML97 does not support global name
spaces, components situated in different prototypes or files
cannot talk directly to each other. Each of the transmit-
ted events requires its own declaration within the interfaces
of the communicating modules and its routing through the
depths of the module hierarchy. The interfaces and routing
sections are growing rapidly and so does the effort for au-
thoring and maintenance. Chris Marrin6 also reported some
performance problems with PROTO–types which originate
in implementation issues. Depending on the depth of the
module hierarchy there are additional costs for the routing
of events. Therefore, this traditional method is very inconve-
nient for large, highly interactive worlds. In order to enable
rich interaction between a number of modules, our goal was

c S. Mader, Fraunhofer IGD, 1999.
Published by the Eurographics Association, ISSN 1017-4656.



S. Mader / Routing Modular VRML-Worlds

to find a more efficient way to define inter-modular commu-
nication.

2. Conceptual View

There are several approaches focussing on communication
issues within shared virtual environments, like the IEEE DIS
standard (Distributed Interactive Simulation)11; 12 originated
in the military sector, the DWTP (Distributed Worlds Trans-
fer and communication Protocol)7; 8 and the VRTP (Virtual
Reality Transfer Protocol)10. Since it is the primary objective
of these approaches to support the communication between
and consistency among several distributed instances of a vir-
tual environment, all these approaches rely on complex net-
work protocols. Besides remote communication, they also
enable local communication across a range of separate mod-
ules but at the costs of high authoring effort. However, our
work is focussed on efficient local communication between
different modules of a single world instance.

Usually the interaction between VRML entities relies on
event-based control (we use the terms ’event-based’ and
’field-based’ according to Brutzman9). Since entity names
are limited to file- and PROTO-type boundaries, event-based
control has some disadvantages mentioned earlier in this pa-
per. Field-based control, however, breaks those limits. Via
SFNode- or MFNode fields referenced VRML-entities are
accessable ’worldwide’. According to section 4.12.9 of the
VRML spec1, script nodes are able to access event and
field attributes of the referenced nodes. This, together with
a modified inlining mechanism enabling the distribution of
node references across file boundaries forms the basis of our
approach.

The implemented framework consists of five basic com-
ponents: Router{}, Module{} and Inline{} as well
as Source{}- and Target{}- nodes for each type of
VRML97–event. Each of these components is implemented
as a VRML97 PROTO-type. Whereas Module{}- and
Inline{}- nodes form an interactive hierarchy across
multiple files (see section 3), the Router establishes the
appropriate connections between Sources and Targets.
Sources and Targets themselves define the endpoints
of communication.

On world startup, a reference to the Router is prop-
agated down the interactive hierarchy which the Router
belongs to. This is done by the Modules and Targets
embodying the hierarchy. Whereas Modules propagate the
Router to all their components, Inlines just promote its
reference to the first node that is found in the inlined code.
This allows the definition of multiple interactive hierarchies
by placing more than one Module in that inlined file, which
is important for multiple inlining of the same file as shown
in figure 1.

In return to the propagation step all interactive entities
register to the Router. Since entity names are limited to

.

.

.

File C

Target "B"

Module

Module

Inline "File D"
Source "C"

Router

File B

Inline "File D"
Source "C"
Target "B"

Module

.

.

.

File A

Module

.

.

.

Inline "File B"
Inline "File C"
Source "A"

Router

File D

Source "B"
Target "C"

Module

.

.

.

File D

Source "B"
Target "C"

Module

.

.

.

File B

Inline "File D"
Source "C"
Target "A"

Module

.

.

.

Figure 1: Example of interactive hierarchies. Note, that in
File C a second hierarchy is established by the other pair of
Module and Router. Thus, there is no route between Source
"B" and Target "B"!

file– and PROTO–type boundaries the routing cannot be
defined by the names of start and end points. Instead, we
use labels to denote the exchanged events. Sources and
Targets are then interconnected by means of those la-
bels. According to their given label the interaction targets
are grouped into labeled target sets. Interaction sources gain
access to those sets by obtaining an SFNode reference to the
set matching their label, respectively. This all is done during
the initialization of the virtual world.

At runtime, the actual event routing works as follows: As
soon as an event is routed to the eventIn–slot of a Source
component, it invokes the same event at the eventOut–slots
of the associated Targets via its reference to the target
set, and thus the Targets themselves (field-based control).
From there the events are routed to their final recipients via
event-based control.

3. Users’ View

As written in the above section, the implementation of our
method consists of five basic PROTO’s. In order to bene-
fit from cross-module interaction one has to establish one
or more interaction hierarchies. Each hierarchy must in-
clude one and only one Router{}–node. The simplest
possible hierarchy consists of a Router{}, Module{},
Source{} and Target{} arranged like this:

Module {
router Router {}

c S. Mader, Fraunhofer IGD, 1999.



S. Mader / Routing Modular VRML-Worlds

components [
DEF Source Source {

label "switch_the_light"
}
DEF Target Target {

label "switch_the_light"
}

]
}
DEF PL PointLight {}
DEF TS TouchSensor {}

ROUTE TS.isActive TO Source.boolIn
ROUTE Target.boolOut TO PL.set_on

Defining additional Module- and Inline- nodes inside
the components list increases the depth of the hierarchy and
enables the interaction across file boundaries (see figure 1).
Inlined files are ordinary VRML-files with a Module de-
fined as the first top-level node. Subsequent Modules do
not contribute to the same interaction hierarchy, and, if given
their own Router, establish additional interaction hierar-
chies. Events transmitted by different interaction hierarchies
do not interfere, even if they are labeled the same. This al-
lows multiple inlining of the same file (thus, introducing the
same labels!) like it is shown in figure 1.

Inserting a new interaction line simply results in the def-
inition of a Source{} at the origin of the event and a
Target{} with matching labels at the desired destination
(both have to be placed inside the component list of the re-
spective Module{}).

Controls

InfoButton

TextFrame

Interaction
Manager

Controls
Manager

InfoManager

Points of Interest

POI_Buddha

. . .

"Buddha_approached"

"InfoButton_pressed"

"display_InfoURL"

"highlight_InfoButton"

"set_InfoURL"

1 1

1

2

2

Figure 2: Application example from the Dunhuang Info Web.
The given numbers denote two different interaction lines.

4. Results

In order to reduce the authoring and maintenance effort, and
to enable both runtime and authoring reusability of mod-
ules while achieving a high level of interactivity, we applied
this solution within the ’Virtual Dunhuang Art Cave’ project.
The logical structure of the VRML-worlds is shown in fig-
ure 3. The only modules which differ from cave to cave are
the components of the ’Scene’ module, containing cave re-
lated content. The complete ’Visitor’ section, which makes
up about 70% of the code of the whole model, is reused for
all cave models. All major interaction relies on the intro-
duced solution. We defined about 20 to 25 labeled interac-
tion lines per cave model. An example for two interaction
lines is given in figure 2.

The setup of the global routing produces some computa-
tional overhead at initialization time. At this stage, we did
not yet measure the initialization delay for worlds with hun-
dreds or thousands of interaction lines. In the case of Dun-
huang Info Web a delay is not noticeable since the cave
models are richly textured worlds and it takes more time
to load the textures than to do the initialization. The actual
event routing causes three times the costs of the ordinary
(local) routing since a single interaction line usually consists
of three ordinary routes: from the sensor to the Source,
from Source to Target, and from Target to the actor.
A comparison with the traditional PROTO–type method and
its shortcommings as described in section 1 puts this addi-
tional costs into perspective again. However, an initializa-
tion delay within the range of a second and slightly higher
routing costs, which do not depend on the depth of the mod-
ule hierarchy, are acceptable trade-offs against the simplified
authoring process and the possibility of complex interaction.

5. Future Work

At this stage the PROTO–types are implemented with the
use of ECMA-script (i.e. JavaScript, see VRML–spec1) only.
The next step will be an implementation using the VRML–
JSAI (Java Script Authoring Interface, see again VRML–
spec1). Detailed evaluation of applicability and performance
will take place in the further course of Virtual Dunhuang Art
Cave project. We especially intend to use this method for the
implementation of the WWW–interface of tools for virtual
restoration and simulation.

6. Acknowledgements

The ’Virtual Dunhuang Art Cave’ project is funded by
the International Bureau of DLR. We would like to thank
Dr. Koepke and Mrs. Hongsernant for their support.

References

1. VRML97, the Virtual Reality Modeling Language,
ISO/IEC International Standard 14772-1:1997.
http://www.vrml.org/Specifications/VRML97/.

c S. Mader, Fraunhofer IGD, 1999.



S. Mader / Routing Modular VRML-Worlds

World

Scene

Lighting Geometry
Points of
Interest

Controls Navigation
Interaction
Manager

Cave
Geometry

Surrounding
Geometry

Visitor

ì camera work
ì definition of navi-

gation modes

ì geometry and
functionality of
controls and
HUD

ì management of
user-system
interaction

ì definition of spe-
cial highlights

ì links to additio-
nal information

ì geometry of
visible sur-
roundings

ì definition and
animation of
lightsources

ì geometry and
textures of the
cave

ì definition of basic
components

Library of
Prototypes

Figure 3: Definition of modular hierarchy of the cave models.

2. Z. Gong, D. Lu, Y. Pan Dunhuang Art Cave Presen-
tation and preserve based on VE. Proceedings of the
Virtual Systems and MultiMedia ’98, Gifu, Japan, Nov.
1998.

3. D. Lu, X. Li,B. Wei, Y. Pan Color Restoration Tech-
niques for Faded Murals of Mogao Grotto. Proceed-
ings of the Virtual Systems and MultiMedia ’98, Gifu,
Japan, Nov. 1998.

4. B. Lutz, M. Weintke. Virtual Dunhuang ArtCave: A
Cave within a CAVE. To appear in Proceedings of the
Eurographics’99.

5. S. Hambach. How to Visit Dunhuang without Travel-
ling to Central Asia. submitted to Eurographics’99.

6. C. Marrin. Beyond VRML — A White Paper.
http://www.marrin.com/vrml/private/EmmaWhitePaper.htm.

7. W. Broll. DTWP – An Internet Protocol for Shared Vir-
tual Environments. Proceedings of the VRML’98 Sym-
posium, Monterey, Ca., February 16-19, 1998. ACM.

8. W. Broll. SmallTool – a ToolKit for Realizing Shared
Virtual Environments on the Internet. Distributed Sys-
tems Engineering Journal, Vol. 5/1998, pp. 118-128,
British Computer Society, The Institute of Electrical
Engineers and IP Publishing, 1998.

9. D. Brutzman. The Virtual Reality Model-
ing Language and Java. Communications of

the ACM, Vol. 41 no. 6,June 1998, pp. 57-64,
http://www.web3d.org/WorkingGroups/vrtp/docs/
vrmljava.pdf.

10. D. Brutzman, M. Zyda, K. Watsen, and M. Macedo-
nia. Virtual Reality Transfer Protocol (vrtp) Design
Rationale. Proceedings Sixth IEEE Workshop on En-
abling Technologies:Infrastructure for Collaborative
Enterprises, MIT Cambridge, Ma.,June 1997, pp. 179-
186.

11. J. Locke. An Introduction to the Internet Network-
ing Environment and SIMNET/DIS. http://www-
npsnet.cs.nps.navy.mil/npsnet/publications/
DISIntro.ps.Z.

12. Distributed Interactive Simulation, DIS-Java-VRML
Working Group.
http://www.web3d.org/WorkingGroups/vrtp/dis-java-
vrml/.

c S. Mader, Fraunhofer IGD, 1999.


