EUROGRAPHICS 98

Short Presentations

Towards more flexible shading architectures

Uwe Behrens

GMD - German National Research Center for Information Technology
SchloB Birlinghoven; D-53754 Sankt Augustin; Email: uwe.behrens@gmd.de

Abstract

We describe a flexible programmable shading architecture based on the concept of poxels. A poxel is some
kind of rich description of a point in space. Poxels are passed between shaders and encapsulate part of the
state of the rendering system. The concept corresponds to a less rigid definition of shaders than the tradi-
tional one, but at the same time promotes flexibility and reuse. By introducing special shaders that represent
control structures, we are able to define a programming language for the dataflow between shaders, giving
us the full power of computable functions. A system that uses this approach has been developed and a number
of shaders have been implemented. We present and describe concept and implementation.

1. Motivation

RenderMan’ and similar systems opened a door to more
flexible rendering by separating shape from shading.
Whereas a core renderer is used to perform visibility
calculations and hidden surface determination, illumi-
nation and shading are expressed using programs written
by the user in a specialized shading language.® These
programs, called shaders can be used to calculate a
variety of phenomena, from light sources over geometric
transformations to surface color.

Unfortunately, most of these systems are less flexible
than necessary: For example, RenderMan does not allow
to call shaders as subroutines from other shaders. This
makes the reuse of code practically impossible, unless pa-
steable shader sources are available. This is due to the

concept of typed shaders2 The renderer decides when to
call each type of shader in the rendering pipeline, and
there can be only one active shader per typeb at the same
time. A shader’s type specifies which part of the

a The following shader types are available in RenderMan:
surface (calculates light reflected from a surface), light
(models light sources), displacement (displacement
mapping), transformation (geometric transformations),
volume (volumetric absorption and scattering) and
imager (target image representation).

b With the exception of light shaders of which more than
one may be in current use.

rendering state it may access and when in the rendering
process it will be called. To preserve this order, shaders
are not allowed to call other shaders to perform subtasks,
not even shaders of the same type. This means shaders
are given only limited control over the rendering process.
A surface shader that implements a “multiple levels of
detail” scheme by dynamically choosing one of a number
of subshaders to perform the shading can not be imple-
mented under these constraints, unless the shader code of
all subshaders is pasted into the new shader. This is
unfortunate, as it hampers reuse and flexibility.

To overcome these problems, we developed and im-
plemented a rendering architecture that uses a less rigid
definition of shaders. Here, shaders can (and shall) be
layered arbitrarily and calculate and return a wide variety
of data.

2. Poxels and Shaders

Formally, a surface shader s° is any function that maps
geometry (G), material properties (M) and lighting (L)
into a color (C)'. Thus, the following signature represents
the shader’s type:

¢ A similar argument holds for other shader types. Due to
space constraints we limit the discussion to surface
shaders.

EUROGRAPHICS 98

s:GxMxL — C

Other shader types have slightly different signatures. As
the renderer decides about the order in which to call
shaders, all light source shaders may have already been
evaluated when the surface shader is called. This strongly
limits the user, as he can not call any other shader to
perform a subtask or forward the job to a shader of even
the same type. But a simple extension of the shader’s
signature gives us the chance to incorporate the desired
effect by making shaders typeless and be evaluated in any
order. If we extend the definition of a shader to any
function with the following signature:

s:(GxMxLxC)—
(GxMxLxC)

then a shader is any function that takes (practically) the
entire state of the shading system and returns a new state.
We call this combined state a “poxel,”I because it is a
mixture of spatial and appearance information, and thus
lies somewhere between voxels and pixels. Using the
new signature, every component of the poxel can be
modified by the shader at any time in the rendering
pipeline. This includes texture coordinates, point, normal,
material, color, etc. The main advantage of the approach
comes from the fact that these shaders can easily be
composed. Under the new signature, any composition
(sequence) of shaders is itself a shader. A shader
modifying texture coordinates alone is not very useful,
but in composition with a shader that uses the warped
coordinates to apply a texture file, plus a third one to
illuminate the now textured surface we build a complex
shader. This approach has a number of advantages:

e Complex algorithms (shader sequences) can easily
be modified and experimented with by changing
components. The result can be stored in a shader
library.

e Similar to the sequence, other control structures like
“if-then-else” or “while-do” can themselves be for-
mulated as shaders. The if-then-else construct re-
turns the result of applying one of its two associated
subshaders, based on some boolean predicate. This
releases the full power of a programming language
built from shaders. One writes simple components
as shaders and ties them together with control
structures (other shaders). Due to the recursive na-
ture of the approach one gets yet another shader as
the final result which may be used accordingly.

. Composition of shaders is left to the user, not to the
renderer exclusively.

3. Implementation and Results

To investigate the power of the concept, a rendering
system was developed whose architecture is based en-

Short Presentations

tirely on fine-grained shaders and poxels. The system
currently consists of about 70 classes, written in C++,
most of them being shaders plus geometric primitives and
various support classes. Available shaders include local
illumination models, raytracing, a radiosity subsystem,
bump- and texturemapping, and custom shaders like one
that renders primitives invisible, assisting the renderer in
visibility calculations.

Our experiences show that the concept of fine-grained
shaders and poxels works pretty well. Once basic func-
tional units have been developed, the control-structures-
as-shaders approach allows to quickly tie them together
and construct complex algorithms. One example are local
illumination shaders that can be extended to incorporate
shadows, using an if-then-else shader whose predicate
tests whether the shaded point is visible from the light
source before shading is performed.

Currently, we are investigating the question how to
optimize the shader programs in order to speed up the
rendering. There are two major paths to follow: static
optimization, which tries to remove redundant shaders
from the program, and dynamic optimization, using
techniques like parallel processing or shader specializa-
tion®> to achieve the desired effects. First experiments
show that a substantial performance gain is possible,
especially for the dynamic phase.

References

1. U. Behrens: Rendering with Poxels — Increasing
Flexibility in Programmable Shading Systems, Pro-
ceedings 3D Image Analysis and Synthesis *97, No-
vember, 17-18 1997, Erlangen, Germany

2. B. Guenter, T. Knoblock, E. Ruf: Specializing Sha-
ders, Computer Graphics, Proceedings SIGGRAPH
1995, p. 343-350

3. P. Hanrahan, J. Lawson: A Language for Shading and
Lighting Calculations, Computer Graphics 24(4),
Proceedings SIGGRAPH 1990, p. 289-298

4. P. Slusallek: Vision — An Architecture for Physically-
Based Rendering, Ph.D. Thesis, Universitat Erlan-
gen-Nurnberg, 1995

5. S. Upstill: The RenderMan Companion: A Pro-
grammer’s Guide to Realistic Computer Graphics,
2nd edition. Addison-Wesley, 1992

