EUROGRAPHICS 2009 / P. Alliez and M. Magnor

Short Paper

Fast Rendering of Particle-Based Fluid by Utilizing
Simulation Data

Ren Yasuda ' Takahiro Harada® and Yoichiro Kawaguchi !

!"The University of Tokyo
2Havok

Abstract

This paper presents a novel algorithm for efficiently visualizing of particle-based fluid simulation with multiple re-
fractions, especially smoothed particle hydrodynamics(SPH), using data and result of simulation itself. In general,
particle-based fluid simulation and visualization are processed completely separated. The novelty of our method
lives in combination of these two processes to avoid extra processes in visualization, and to mitigate computing

cost of visualization.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.7]: Three-Dimensional

Graphics and Realism—

1. Introduction

Real-time fluid simulation on the GPU, both grid-based and
particle-based, is no longer difficult because of the growth of
computing power and programmability of the GPU. There
still are many challenging topics in simulating fluid with ad-
vanced methods in real-time, of course, but it is also true
that "simple" real-time fluid simulation is no longer diffi-
cult. However, visualization of fluid is still left because of
the difficulty of constructing a smooth surface from the dis-
crete parameters of fluid. In particular, visualizing particle-
based fluid with dynamically moving computational ele-
ments is more difficult than grid-based simulation with a
static computational elements. So, several researchers are
studying the visualization of particle-based simulation by
using point-based, polygon-based, voxel-based approaches.
Among these, voxel-based approach has an advantage which
makes it possible to calculate multiple refraction using vol-
ume traversal by ray casting. Therefore, we used this ap-
proach.

Traditional voxel-based method is very simple. First, a
density field in a 3D volume is constructed and then traverse
the volume by ray casting. The density field is constructed
by summing the density of particles, each particle is assumed
to be surrounded by the same density distribution, where the
density of the particle is modeled as a function of the dis-
tance from the center of the particle. However, each particle

(© The Eurographics Association 2009.

does not need to have the same density distribution as will
be explained in this paper: particles in sparse areas should
have a wide density field and vice versa.

For efficient visualization, we introduce "particle mask"
for each particle. This parameter represents the grid occu-
pancy of particles in six directions. Each particle deforms its
density field on the basis of the "particle mask", and there-
fore we can avoid redundant computation for constructing
density fields in a 3D volume.

2. Related Works

A typical approach of rendering metaballs, Marching Cubes
Algorithm, is a polygon-based method and was proposed by
Lorensen et al. [LC87]. However, it is difficult to initerac-
tively render metaballs of polygon-based method with com-
plex refractions, because they are represented as mesh data.

On the other hand, there also have been several stud-
ies about rendering of metaballs using methods other than
the polygon-based method. Muller et al. proposed a screen-
space rendering method of metaballs using iterative approx-
imation of isosurface [MGE]. As their method is not for
fluid visualization, it cannot calculate multiple refraction.
Kanamori et al. computed ray-isosurface intersection using
depth peeling and Bezier Clipping [KSNO8]. However, mul-
tiple rendering passes are needed to detect the ray-isosurface

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org

62 R. Yasuda & T. Harada & Y. Kawaguchi / Fast Rendering of Particle-Based Fluid by Utilizing Simulation Data

intersecting point, and therefore rendering with multiple re-
fractions is difficult. Iwasaki et al. visualized the surface
of particle-based simulation using a point-based method
[IDYNO6]. Their method is for surface generation, so details
are lost.

3. Voxel-Based Vsualization Method

In this section, we discuss voxel-based visualization of
particle-based fluid. Density field in a volume is constructed
after fluid simulation, and then surface is extracted by ray
casting and particles are visualized as fluid with complex re-
fractions. We used a volume that had the same resolution
as the fluid simulation grid for maximum efficiency;as de-
scribed in Sec. 4.2.1. The density of the 3D volume is con-
structed by adding a density distribution of each particle to
voxels within a certain distance from the center of the parti-
cle. Finally, the surface of the fluid is extracted by ray cast-
ing, a method that traverses a volume data at tiny intervals
and detects surfaces using certain thresholds.More precise
surface position can be obtained by using internal divisions.
An benefit of this method is that, a normal vector can be
easily obtained from the gradient at the detected position,
and therefore visualizing volume with multiple refractions
by computing refraction using a normal vector is compara-
tively easy. The threshold for detecting surfaces is set high
enough that the minimum size of a drop attributed to only
one particle was not smaller than the size of a voxel. This en-
sured that each particle added density higher than the thresh-
old to at least one voxel and prevented drops from disappear-

ing.

4. Algorithms
4.1. Smoothed Particle Hydrodynamics

We used smoothed particle hydrodynamics (SPH) for the
fluid simulation. An SPH simulation stores the position, ve-
locity, and density of each particle during the simulation
and a grid is used to make the simulation efficient. The grid
stores the indices of particles in each grid cell. It is used for
accelerating neighboring searches during force and density
computation. An SPH simulation is suited for paralleliza-
tion, so there have been several studies on GPU-based im-
plementation of SPH [ATY*04] [HKKO07].

4.2. Density Field Construction

After simulating fluid by SPH, we construct a density field
by adding the density distribution of each particle, to voxels
within a certain distance, as described in Sec. 3. This process
can be a bottle neck of the computation because each particle
accesses many voxels in this process, and the massive num-
ber of memory accesses leads to high latency. Therefore, we
separate the construction of the density field into two pro-
cesses: rough density field construction and fine density field

SPH Simulation

Position Grid

3D Texture

Figure 1: Flow of constructing density field

construction (Fig. 1). In addition, particle mask accelerates
the construction of the fine density field further, with which
the computation of particles in dense areas can be skipped.
To skip density-adding operations in the construction of the
fine density field, we define a voxel that has higher density
than a threshold as "a saturated voxel". Voxels saturated by
the construction of the rough density field are skipped in the
construction of the fine density field. We discuss the con-
struction of the rough density field and fine density field,
the computation of particle mask, and voxel saturation in the
followings.

4.2.1. Rough Density Field Construction

First, we construct the rough density field. Because we en-
sure that each particle adds density higher than the threshold
to at least one voxel, voxels including one or more parti-
cles will certainly be saturated after the construction of the
whole density field. Fortunately, the SPH grid has the num-
ber of particles in each grid cell. Therefore, we set the reso-
lution of the volume to the same as the SPH grid and saturate
voxels including one or more particles first; we call this pro-
cess rough density field construction. Each voxel first loads
the number of particles from the corresponding grid cell of
SPH. If the number is other than zero, the voxel saturates; if
the number is zero, the density of the voxel is set to zero.

4.2.2. Fine Density Field Construction

The rough density field does not have detailed information
of the surface although it knows which grid is already satu-
rated. Therefore, each particle adds value to the neighboring
cells to calculate the details. However, because it does not
have to add value to a saturated cell, the density of voxels
are loaded at first and operations are skipped at saturated
voxels. Although a lot of computation is skipped because of
the rough density field, constructing the fine density field re-
quires a lot of memory access. This is because each particle

(© The Eurographics Association 2009.

R. Yasuda & T. Harada & Y. Kawaguchi / Fast Rendering of Particle-Based Fluid by Utilizing Simulation Data 63

Figure 2: Particle mask (2D for simplicity, so particle mask
only has four parameters). Black arrows represent the par-
ticle mask of corresponding directions, and red curved line
represents the extent to which a particle has impact.

has to load the value in the rough density field from all cells
within the effective radius at least once. Memory access is
much expensive than arithmetic on the GPU. To reduce the
memory access, we introduced particle mask.

Particle mask includes six parameters, each of which cor-
responds to +X, -X, +Y, -y, +z, and -z. The particle mask is
used to skip the computations by deforming a density dis-
tribution of each particle as illustrated in Fig. 2. There are
three highlighted particles in different positions in the Fig.
2. Particle 1 is an underwater particle, and so each compo-
nent of particle mask (represented as a black arrow) has the
maximum value. Particle 2 does not have any neighbor in its
effective radius, therefore all components of particle mask
have the minimum value. Particle 3 exists on the surface, so
the downward direction has the maximum value, the upward
direction has the minimum value, and the left and right direc-
tions have medium values. The density distribution of each
particle is deformed according to the particle mask in order
to reduce the computation in the direction of higher particle
mask.

4.2.3. Computation of Particle Mask

Although neighboring searches are needed for the compu-
tation of particle mask, additional memory accesses are not
required because this process is set in the process of com-
puting density of the SPH simulation, which also has the
neighboring search process. The +x component of particle i
[P}]px is calculated as follows.

k
Pl = X b N

where 7;; is a vector from particles j to i, [r;j]x and [r;]y
represent the x and y components of r;;, respectively, and k
is a coefficient.

(© The Eurographics Association 2009.

Figure 3: Computation of particle mask. Left) Particles used
for computing positive x component of particle mask of par-
ticle i. Right) Colored SPH particles visualized using parti-
cle mask.

Added and saturated

,,,,,,,,,,,, Saturation threshold

,,,,,,,,,,,, Threshold

Skipped Added

Figure 4: Atomic operation of a particle and surrounding
voxels. Green bars are values already added by other par-
ticles. Atomic operation not executed if value of voxel is
over saturation threshold. If value of voxel exceeds satura-
tion threshold, value is clipped.

4.2.4. Voxel Saturation

If a voxel is already saturated, accumulation of the density
to the voxel can be skipped. The threshold we used here to
define voxel saturation is not the same as the threshold used
for defining the surface at ray casting. This is because in ray
casting, the value at a point is obtained by linear interpola-
tion of values on grid points. Therefore, if values of voxels
are clipped by the ray-casting threshold, the ray would de-
tect the surface at a point different from that in the case of
using the saturation threshold; this leads to apparent deteri-
oration. We chose a threshold about five times larger than
the threshold used for the surface definition for our cases.
If a smaller threshold is used, the quality of the surface de-
creases, although the computation decreases. There is a trade
off between the quality of the surface and the computational
burden.

4.3. Ray casting

Finally, we visualize the density field by ray casting, de-
scribed by Crane et al. [CLT07]. The maximum reflaction
depth is set to 4 in the results shown in this paper. This makes
it possible to see water through water, which has never be-
fore been accomplished in real-time.

5. Results and Conclusions

The proposed method was implemented on a PC with Core
2 Duo 3.0 GHz CPU and Nvidia GeForce GTX 280, using

64 R. Yasuda & T. Harada & Y. Kawaguchi / Fast Rendering of Particle-Based Fluid by Utilizing Simulation Data

Figure 5: Left) Real-time rendering of 27,000 fluid particles with 64 x 64 x 64 grid; image size of figures is 512 512. Even
though fluid simulation is iterated 5 times with each frame, this program runs at about 30 fps, including density field construc-
tion, rendering, and simulation time. Calculating multiple refractions enables to see water through water. Right) Rendering of
1,000,000 particles with 192 %192 % 192 grid. This is not real-time simulation (1.8sec/frame), but our method makes the density
field construction 2.5 times faster. Background image from <www.debevec.org>.

8,000 27,000 64,000 | 125,000
Sim1 | 14,533.0 | 33,058.3 | 48,941.9 | 72,054.3
Sim2 7,687.7 | 12,788.7 | 16,180.1 | 19,993.7

Table 1: Computing performance of density field with 64
64+ 64 grid

OpenGL, Cg, and CUDA. The real-time SPH simulation in-
cluding visualization of the proposed method is shown in
Fig. 5.

A comparison of the computational time of constructing
the density field between a simulation that used a density
field construction method without and with the proposed
method is shown in Table 1 as Sim1 and Sim2, respectively.
We can see that the proposed method reduces the computa-
tional cost of density field construction, which is expensive
compared to that of SPH simulation. The proposed method
reduces the computation cost at least by half with 8,000 par-
ticles and the difference grows as the number of particles in-
creases. When 125,000 particles were used, the computation
was more than 3.5 times faster than one without our method.

This paper proposed a new method for accelerating the
construction of a density field by using the results of SPH
and visualized SPH with multiple refractions. There are sev-
eral points which should be addressed in future works. First,
the rendering speed is strongly connected to the resolution
of the output image. To improve the speed, the GPU-based
octree introduced by Sun et al. [SZS*08] should be of help.
Second, our method is fully grid-based, so the minimum size
of a particle cannot be smaller than the size of a voxel. This
restriction would be circumvented by separating particles in

sparse areas from other dense particles and calculating iso-
surface directly from their positions.

Acknowledgements

This research was supported by Core Research for Evolu-
tion Science and Technology (CREST) of Japan Science and
Technology Agency(JST).

References

[AIY*04] AMADA T., IMURA M., YASUMURO Y., MANABE Y.,
CHIHARA K.: Particle-Based Fluid Simulation on GPU. In ACM
Workshop on General-Purpose Computing on Graphics Proces-
sors and SIGGRAPH (2004).

[CLT07] CRANE K., LLAMAS I., TARIQ S.: Real-time simula-
tion and rendering of 3d fluids. GPU Gems 3 (2007), 633-674.

[HKKO7] HARADA T., KOSHIZUKA S., KAWAGUCHI Y.:
Smoothed particle hydrodynamics on GPUs. In Computer
Graphics International (2007), pp. 63-70.

[IDYNO6] IWASAKIK., DOBASHIY., YOSHIMOTO F., NISHITA
T.: Real-Time Rendering of Point Based Water Surfaces. LEC-
TURE NOTES IN COMPUTER SCIENCE 4035 (2006), 102.

[KSNOS8] KANAMORI Y., SZEGO Z., NISHITA T.: GPU-based
Fast Ray Casting for a Large Number of Metaballs. In Computer
Graphics Forum (2008), vol. 27, Blackwell Synergy, pp. 351-
360.

[LC87] LORENSEN W., CLINE H.: Marching cubes: A high res-
olution 3D surface construction algorithm. In Proceedings of the
14th annual conference on Computer graphics and interactive
techniques (1987), ACM New York, NY, USA, pp. 163-169.

[MGE] MULLER C., GROTTEL S., ERTL T.: Image-Space GPU
Metaballs for Time-Dependent Particle Data Sets.

[SZS*08] SuN X., ZHou K., STOLLNITZ E., SHI J., GUO B.:
Interactive relighting of dynamic refractive objects.

(© The Eurographics Association 2009.

