
EUROGRAPHICS 2006 / D. W. Fellner and C. Hansen Short Papers

Modeling Real-time Rendering

Chee-Kien Gabriyel Wong and Jianliang Wang

Nanyang Technological University, Singapore

Abstract

The real-time rendering process is well known to be extremely dynamic and complex. This paper presents a novel
approach to modeling this process via the system identification methodology. Given the process’s dynamic nature
arising from the possible myriad variations of render states, polygon streams and the non-linearities involved,
we describe a modeling approach using neural networks with supervised training from application-generated
data. By comparing the outputs of the neural network model’s representation of the rendering process with actual
empirical data, we discuss the accuracy of our approach in relation to the practical issues of integrating this study
to real-world applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Interaction techniques

1. Introduction

The key challenge in real-time computer graphics is to pro-
vide the highest level of realism in the generated imagery
at interactive frame rates given a fixed set of computing re-
sources. Although research done in the past attempted to ad-
dress the frame latency problem by providing mathematical
models of the rendering process, these models were often
primitive because they were derived from some approximate
experimentation or they depended on specific application-
level data structures (such as projecting render times based
on small polygon count quantities [FS93] and using a par-
ticular scene description format [WW03]). Furthermore,
with the advent of more powerful and programmable con-
sumer graphics hardware in the coming years, the render-
ing pipeline is being used in an increasingly complex man-
ner to achieve ultra-realistic visual effects. Consequently, it
could be progressively challenging to adopt these models
into the current applications as hardware and software tech-
nolgy continue to evolve.

While much of past research focused on finding an accu-
rate formulation to describe real-time rendering, this paper
discusses their inadequacies with reference to the real-world
applications of today and proposes an approach by which
an accurate model of the rendering process may be obtained
through the system identification methodology [Lju87].

2. Previous Work

Over a decade ago, Funkhouser and Sequin [FS93] described
a predictive approach to controlling frame rate through a ren-
dering system that was defined by a benefit-cost model. The
elements of this model consists of an object tuple, (O,L,R)
where O is the instance of an object, L, being the level-of-
detail of the object instance and R, the rendering algorithm
associated to it. An algorithm based on constrained opti-
mization was developed to select the best level-of-detail to
match the user selected frame rate. The cost defined in terms
of rendering time was:

Cost(O,L,R) = max
{

C1Poly(O,L)+C2Vert(O,L)
C3Pix(O)

}
(1)

where Poly is the polygon count, Vert is the number of ver-
tices, Pix is the time taken per pixel stage of rendering an
object and C1, C2 and C3 are constant coefficients specific to
a rendering algorithm and machine.

Apart from the inaccuracy mentioned by Wimmer and
Wonka [WW03] on this formulation in terms of account-
ing for just polygons and vertices of visible objects instead
of the actually transformed ones, it is important to note that
the polygon processing performance of graphics hardware
is generally non-linear. Hook and Bigos [HB97] provided
empirical evidence that the time required to process a sin-
gle polygon or vertex varies at different overall quantities
even with some fixed parameters such as the rendering state

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org


C.G. Wong & J. Wang / Modeling Real-time Rendering

and display resolution. As a result, the calculation of poly-
gon processing time based on the best fitting line across
the stated four level-of-details (LODs) of the sample object
may not be an accurate basis for rendering time estimation
per polygon. At the same time, this non-linear polygon pro-
cessing characteristic of graphics hardware would weaken
Aliaga and Lastra’s [AL99] proposed rendering time formu-
lation based on:

RenderingTime = C1 ∗NumberO fVisibleTriangles (2)

since C1 is defined as a static triangle processing rate given
by the hardware. Wimmer and Wonka [WW03] provided a
thorough insight into the rendering process by listing several
other underlying factors that contribute to the total rendering
time. Their proposed rendering time formulation was:

RT = ETsystem +max(ETCPU ,ET GPU ) (3)

with

ETCPU = ETCPU
nr +ETCPU

r +ETCPU
mm +ETCPU

idle (4)

and

ET GPU = ET GPU
f s +ET GPU

r +ET GPU
mm +ET GPU

idle (5)

where

• RT is the total render time
• ET, the estimated time
• system, all other system tasks
• nr, the non-rendering tasks
• r, the rendering tasks
• mm, the memory management tasks
• idle, the processor idle or waiting time
• fs, frame setup

Although this formulation attempts to be all-
encompassing by considering the key and important
processes associated to rendering, there are however too
many subtasks subsumed under various elements of the
equation. Hence, the practicality of such a formulation
becomes questionable since it could be impossible or
non-trivial to measure these subtasks unless the test scenes
are sufficiently simple.

2.1. Frame time

While the term rendering technically refers to the genera-
tion of graphics or imagery, it is of common knowledge that
it includes other related processes. The reason is twofold
- before dedicated hardware for rendering was introduced
the central processing unit and main memory was shared
amongst graphical and non-graphical processes; all practical
computer-generated graphics applications such as as virtual
reality walkthroughs, games and simulation software does
not consist of pure rendering functions alone. This is best
illustrated in many well known real-time rendering toolkits
such as Performer [RH94] and OpenSG [KWE03] in which
processes are classified into the APP, CULL and the DRAW

stages. Examples of such processes from the APP stage are
database manipulation, networking, input-output control and
logic computation. Hence, the formulation of a frame time
estimation framework requires not only inclusion of rele-
vant time quantities but also the possibility of tracking or
measuring them as well. This is especially non-trivial in ap-
plications such as games where content and state changes
are dynamic. For instance, it is possible to transfer a non-
rendering process that used to run on the CPU to the GPU
based on the programmable graphics hardware today. How-
ever, this may not be captured by Wimmer and Wonka’s for-
mulation in Equation 5.

3. System identification

System identification is the process of establishing mathe-
matical models of dynamic systems based on observed data
from these systems [Lju87]. Depending on the a priori in-
formation available, a system may be modeled out of em-
pirical data (black-box modeling) or some existent guiding
physical principles (white-box modeling). Since it is non-
trivial to formulate a function that is comprehensive in terms
of describing real-time rendering, this research is focused
on the black-box modeling approach using measured data.
Figure 1 illustrates the procedures in system identification.
It basically describes an iterative process by which a sys-

Figure 1: The system identification process.

tem model is derived from measured data through selection
of a near-fitting model structure and subsequently comput-
ing accurate parameters for this model such that it even-
tually exhibits identical behavior as the actual system. The
derived model is validated using an alternative set of input
data different from those used for identification. Due to its
wide adoption in many modeling and control applications
and its data-driven nature, the system identification process
was used in our research as a means to establish a credible
model for describing the rendering process.

4. Modeling using neural networks

The first artificial neuron proposed by McCulloch and
Pits [MP43] mimicks the function of the biological neu-

c© The Eurographics Association 2006.



C.G. Wong & J. Wang / Modeling Real-time Rendering

ron through a multiple-input-single-output model. It is es-
sentially a processing unit that sums up the weighted values
of its inputs to produce an intermediate output. This output
is then fed as the input to an activation function that pro-
duces the final output. With layers of interconnected neu-
rons, an artificial neural network (ANN) is formed and is
frequently used to simulate the function of many systems.
Figure 2 illustrates the structure of the artificial neuron.
ANNs need to be trained in order to capture the character-

(a)

(b)

Figure 2: (a): The perceptron neuron. (b): A multi-layer
perceptron network (MLP).

istics of the systems they model after. Since its inception,
training algorithms for neural networks such as the back-
propagation [RHW86] and Levenberg-Marquardt [Mar63]
methods were developed to compute the weights and bias
for the inputs.The neural network is adopted in our research
for modeling the rendering process because of its ability to
capture information from complex, non-linear, multi-variate
systems without the need to assume any underlying data dis-
tribution or mathematical models. In recent years, there has
also been increasing popularity in using multi-layer percep-
tion networks due to its impressive successes in real-world
applications such as pattern recognition and control applica-
tions.

5. Implementation and Results

5.1. Test setup

Empirical data consisting of the triangle count per frame and
frame rate were collected from two different applications
running on a Pentium IV, 3.2Ghz processor with 1GB RAM
and NVidia’s GeForce 6800 graphics board. This was done
via the user’s free input of the camera’s movement and
orientation to simulate common navigation characteristics
in virtual environments. The objective is to capture a wide
range of polygon loads and a good combination of rendering
features so that the rendered frames reflect properties which
are representative of the application. Both applications
rendered the animated frames in real-time. The first appli-
cation was custom developed to encompass most common
rendering parameters in applications such as textures, fog,

lighting, animation, shaders, moderate depth complexity
and varying polygon loads. It consists of a scene populated
by hundreds of different instances of a bumpmapped
ogre’s head, an animated grassland using shaders and also
moving clouds on a skydome. The second application is a
popular game title, Serious Sam 2, published by 2KGames
(www.croteam.com). Sample screenshots from the ap-
plications are provided in Figure 3. A randomly chosen
game level was used and data were collected from trial
runs of the game. Microsoft’s DirectX tool, PIX (http://
www.microsoft.com/windows/directx/default.aspx)
together with NVidia’s NVPerfKit (http://developer.
nvidia.com/object/nvperfkit_home.html) and its
instrumentation driver were used as the data collection
tools due to its good support and ease-of-use for detecting
low-level software and driver information. The next step

Figure 3: Screenshots from (a) the first test application and
(b) the second test application, Serious Sam 2, a game pub-
lished by 2K Games.

was to process the collected data by using the Neural

c© The Eurographics Association 2006.



C.G. Wong & J. Wang / Modeling Real-time Rendering

Network Plant Identification Tool [DB93] from Matlab.
In accordance to the system identification methodology
described in Section 3, a neural network was first selected
as the model structure. The collected data were fed into the
neural network to train it to generate an accurate mapping
of the relationship between the input triangle count and
the output frame rate. Different neural network structures
and parameters were tried in order to obtain the best fitting
model. This process went on in an iterative manner until the
performance objective was met. This performance objective
is simply a numeric quantity describing the difference
between the predicted and actual frame rate. The same
procedure was repeated for the second application.

5.2. Results

From the experiments conducted, the neural network used to
model the first application consists of a MLP network with
two layers, six units and three delay units in each of the in-
put and output channels. The second neural network differs
from the first with just four delay units in both the input and
output channels. An example of the neural network used to
model the first application is shown in Figure 4. The graphs

Figure 4: The neural networks used for capturing the sys-
tem properties of the first application.

at the top-right and bottom-right in Figure 5 refer to the ac-
tual and predicted output frame rates of the application and
neural network respectively. The difference between them
is shown in the graph at the bottom-left in the same figure.
The graph at the top-left corner shows the input (triangle
count per frame) to the neural network model over the test
period. It was observed that the mean difference between the
frame rates generated by the neural network model and the
actual application to be 0.00455. In the same order of ar-
rangement, the graphs for the second experiment using the
game are shown in Figure 6. The neural network was able
to model closely the characteristics of the rendering process
in the second application with a mean difference of 0.00896
in terms of frame rate. All networks were trained using the
Levenberg-Marquardt algorithm over 200 epochs for over
5000 frame samples.

Figure 5: The results generated by the neural network com-
pared to the actual output in the first application.

Figure 6: The results generated by the neural network com-
pared to the actual output in the second application.

5.3. Discussion

The objective of our tests was to derive a model of the ren-
dering process of an application. While it may seem ideal to
have a single model for all applications however this is im-
practical because basically rendering software systems are
dynamic and they vary in terms of the number of compo-
nents contributing to the final render time. For example, it
is common that applications differ in the type and number
of processes in the APP stage (such as network communica-
tion, application logic and input-output processes). Trying to
derive a model for this stage is tantamount to finding a gen-
eral description of the non-drawing processes which is non-
trivial. On the hand, over generalizing the model by group-

c© The Eurographics Association 2006.



C.G. Wong & J. Wang / Modeling Real-time Rendering

ing these processes together as a single consituent of the to-
tal rendering time limits the usefulness of the model since
the breakdown is then not known and thereby cannot be ex-
amined in detail or controlled. Nevertheless, it is possible to
derive a model at application level such that good results can
be obtained when the model is tested with varying conditions
within the scope of the application (such as different combat
situations in a game level or across levels). This explains our
approach of determining a single but useful model of a par-
ticular rendering process which is application-specific.

From Section 2, it is apparent that the rendering process
consists of more than a single component or input. There
is no contradiction to this fact even though we derived just
the relationship between triangle count and frame rate us-
ing a neural network because the focus is to expose an input
quantity (triangle count) that can be easily measured while
keeping the other factors in the black-box. The purpose of
doing so is related to future development of this concept such
as applying suitable control strategies on the model by con-
trolling the input. To illustrate, one powerful usage of this
modeling approach is to develop a software component that
is able to vary the polygon count per frame through usage of
level-of-detail techniques or culling. By inserting this con-
trolling element to a feedback loop, stable and interactive
frame rates can be achieved during run-time.

As described in Section 5.2 the structural similarity be-
tween the two neural networks should not carry an implica-
tion that the two applications’ features are similar because
the weights of the two neural networks are different after
training. Furthermore the game Serious Sam 2 itself consists
of more complex processes such as artificial intelligence and
audio processing than the first application. However, this
opens up additional scope for studies into finding possible
relationship that may exist among various neural networks
structures and their corresponding rendering processes.

On practical aspects and applicability of this research,
data collection can be done easily via freely available tools
and in a way transparent to the user. Once a satisfactory
model is derived, there is no need to re-train the network
unless the application changes. From the experiments, train-
ing of our neural network takes less than three minutes for a
dataset of approximately 5000 data points on a typical Pen-
tium IV system and this can be done off-line.

6. Conclusion

We described an approach to modeling real-time rendering
using the system identification approach. The inadequacies
in previous rendering time formulations due to incomplete or
inaccurate descriptions were discussed. We then introduced
neural networks as a means to model the rendering pro-
cess and compared the outputs of the neural network models
with those of the actual applications. Finally, a discussion on
practical issues in implementing this approach was provided.

References

[AL99] ALIAGA D. G., LASTRA A.: Automatic Image
Placement to Provide a Guaranteed Frame Rate. In SIG-
GRAPH 1999, Computer Graphics Proceedings (Los An-
geles, 1999), Rockwood A., (Ed.), Addison Wesley Long-
man, pp. 307–316. 2

[DB93] DEMUTH H., BEALE M.: Neural Network Tool-
box for use with MATLAB - User’s Guide. The Math-
works, Cochituate Place, 24 Prime Park Way, Natick, MA,
USA, 1993. 4

[FS93] FUNKHOUSER T. A., SÉQUIN C. H.: Adaptive
Display Algorithm for Interactive Frame Rates During Vi-
sualization of Complex Virtual Environments. In Pro-
ceedings of ACM SIGGRAPH Conference (Aug 1993),
pp. 247–254. 1

[HB97] HOOK B., BIGOS A.: 3D Acceler-
ation Demystified, Part II: The Benchmarks.
http://www.gamasutra.com/features/19970601/
3d_acceleration_demystified.htm. 1

[KWE03] KLEIN T., WEILER M., ERTL T.: A Vol-
ume Rendering Extension for the OpenSG Scene Graph
API. In VIS ’03: Proceedings of the 14th IEEE Visualiza-
tion 2003 (VIS’03) (Washington, DC, USA, 2003), IEEE
Computer Society, p. 95. 2

[Lju87] LJUNG L.: System Identification, Theory for the
User. Prentice Hall, 1987. 1, 2

[Mar63] MARQUARDT D. W.: An Algorithm for Least-
squares Estimation of Nonlinear Parameters. Journal of
the Society for Industrial and Applied Mathematics 11, 1
(1963), 431–444. 3

[MP43] MCCULLOCH W., PITTS W.: A Logical Calcu-
lus of Ideas Immanent in Nervous Activity. Bulletin of
Mathematical Biophysics 5 (1943), 115–133. 2

[RH94] ROHLF J., HELMAN J.: IRIS Performer: A High
Performance Multiprocessing Toolkit for Real-time 3D
Graphics. In SIGGRAPH ’94: Proceedings of the 21st
Annual Conference on Computer Graphics and Interac-
tive Techniques (New York, NY, USA, 1994), ACM Press,
pp. 381–394. 2

[RHW86] RUMELHART D. E., HINTON G. E.,
WILLIAMS R. J.: Learning Internal Representations by
Error Propagation, vol. 1. MIT Press, Cambridge, MA,
1986. 3

[WW03] WIMMER M., WONKA P.: Rendering Time Es-
timation for Real-Time Rendering. In Rendering Tech-
niques 2003 (Proceedings of the Eurographics Sympo-
sium on Rendering 2003) (Jun 2003), Christensen P.,
Cohen-Or D., (Eds.), Eurographics, Eurographics Asso-
ciation, pp. 118–129. 1, 2

c© The Eurographics Association 2006.

http://www.gamasutra.com/features/19970601/3d_acceleration_demystified.htm

