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Abstract

This paper presents advancements in novel-view synthesis with 3D Gaussian Splatting (3DGS) using a dense and accurate SfM
point cloud initialization approach. We address the challenge of achieving photorealistic renderings from sparse image data,
where basic 3DGS training may result in suboptimal convergence, thus leading to visual artifacts. The proposed method en-
hances precision and density of initially reconstructed point clouds by refining 3D positions and extrapolating additional points,
even for difficult image regions, e.g. with repeating patterns and suboptimal visual coverage. Our contributions focus on improv-
ing “Dense Feature Matching for Structure-from-Motion” (DFM4SfM) based on a homographic decomposition of the image
space to support 3DGS training: First, a grid-based feature detection method is introduced for DFMA4SfM to ensure a well-
distributed 3D Gaussian initialization uniformly over all depth planes. Second, the SfM feature matching is complemented by a
geometric plausibility check, priming the homography estimation and thereby improving the initial placement of 3D Gaussians.
Experimental results on the NeRF-LLFF dataset demonstrate that this approach achieves superior qualitative and quantitative
results, even for fewer views, and the potential for a significantly accelerated 3DGS training with faster convergence.

CCS Concepts

* Computing methodologies — Reconstruction; Point-based models; Rendering;

1. Introduction

3D Gaussian Splatting (3DGS) [KKLD23] emerged as a promising
alternative to Neural Radiance Field (NeRF) techniques for novel-
view synthesis by offering computational efficient training and
accelerated photorealistic rendering using a splatting-based scene
representation. Yet, its effectiveness is contingent on the quality and
quantity of the initial Structure-from-Motion (SfM) point cloud.
This is a limitation particularly for scenarios with a limited num-
ber of images, where sparse and inaccurate point clouds can lead to
suboptimal training convergence and result in visual artifacts.

Seibt et al. [SVRLCL23] introduced a dense and accurate fea-
ture matching approach (DFM4SfM) to improve conventional StM:
It is based on a homographic decomposition of the image space
through iterative rematching, which improves precision and den-
sity of the point cloud reconstruction using positional refinement
of matched feature points, identification of critical non-planar im-
age areas (e.g. due to parallaxes), and extrapolation of additional
matches in regions difficult for one-shot matching. DFM4StM
also comprises a multi-view strategy for feature cluster refinement
across different views by leveraging a connectivity graph, thus en-
hancing pose estimation and 3D reconstruction accuracy. Addition-
ally, a global matching extrapolation method is employed (con-
sidering multiple neighboring views) to increase matching recall
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Figure 1: Visual comparisons on sparse image data from NeRF-
LLFF: 3DGS without (top) and with the proposed method (bottom).

and reconstruct even denser 3D structures. The main contributions
of this work are the following DFM4SfM extensions for improv-
ing 3DGS rendering: (a) Grid-based feature detection for a well-
distributed point cloud generation that captures both foreground
and background details and initializes Gaussians across multiple
depth planes. This approach assures a more uniform and faster
converging splat initialization, also considering image areas with
visually less significant features. (b) A multi-homography decom-
position strategy supplemented by the estimation of geometrically
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plausible feature matches, enhancing homography estimation for
wide-baseline image pairs with complex visual structures or multi-
ple depths. This novel strategy minimizes sparse and potentially in-
correct splat initializations of traditional SfM approaches, typically
caused by fundamental matrix degeneration in such input images.

Related Work To enable 3DGS for scenes with sparse image
data, [ZFJW23] proposed a proximity-based and depth-supported
re-distribution of Gaussians to prevent overfitting and visual arti-
facts. Since their method depends on an additional unpooling pro-
cess and requires a pre-trained monocular depth estimation model,
it is not able to accelerate training convergence.

2. Methods

To support a uniform feature detection — and thus a well-distributed
point cloud for 3DGS - the image is initially split into an w X h
grid. For each grid cell, a coarse-to-fine detection approach is em-
ployed: Given an approximate maximum feature count fiqx, the
corresponding detection threshold is adjusted iteratively until %
is reached. If the number of detected features saturates during iter-
ation, then this sub-process terminates early for that grid cell (typi-
cal for visually homogeneous image areas, like the sky). Based on
our experiments, we propose a 16 x 16 grid for full HD images, as
higher resolutions yielded no notable improvements w.r.t. feature
detection and uniformity, respectively. Furthermore, DFM4StM
generates a high-density point cloud by successively rematching
detected features over multiple iterations. To reduce the risk of mis-
matches in later iterations due to increasing matching distances,
the basic feature descriptor distances are complemented with posi-
tional encodings. These are used to derive geometric relationships
of matches w.r.t. previous rematching iterations (with potentially
lower matching distances) in order to “stabilize” feature correspon-
dences as follows: In each rematching iteration n, let ps be an un-
matched feature point in the source image, and (Ns, N;) all the asso-
ciated Delaunay-adjacent feature points that have already matched.
Let P, = {p,1 ,p,2, ...} be a list of KNN matches for k = n w.r.t. py in
the target image, ordered by their basic feature descriptor distances.
Now, every point in P that is located within the convex hull of N; is
then ranked higher (w.r.t. to the sorting order) than points outside of
the hull, since geometric proximity of adjacent matching candidates
correlates with visual correspondence. Then, all “top-ranked” pairs,
ie pl = (p;_rx,p}’,), are used for DFM4SfM’s homographic esti-
mation to compute a consensus set C. Finally, each resulting pair
that is detected as an outlier, i.e. p,~1 ¢ C, is replaced by the second-
best consenting pair, thus with the index min {r € [2..k] | p} € C}, if
available. Using this geometric plausibility check for DFM4SfM’s
homographic decomposition increases the number of matching in-
liers, resulting in a more robust multi-plane recovery in 3D space,
and thus a denser and preciser point cloud for 3DGS initialization.

3. Experiments

Benchmarks were performed for the NeRF-LLFF dataset
[MSOC*19] on an Intel i9 14900KF CPU, 64GB RAM, and a
GeForce RTX 4060 GPU. Ca. 10.000 keypoints were detected per
image, while COLMAP was used for the default 3D reconstruction.
Its built-in feature matching was fine-tuned and used for compar-
ative evaluation with the DFM4SfM-based method. On average,

using DFM4SfM takes two times longer, but reconstructs 213%
more 3D points. In Table 1, quantitative results for 30.000 3DGS
training iterations are shown. Table 2 shows further results for the
Fern NeRF-LLFF scene with varying numbers of training images
and iterations. Using DFM4SfM results in a significantly increased
performance across all metrics (on average: SSIM +11.7%, PSNR
+15.0%, LPIPS —35.0%), even for considerably sparser configu-
rations, e.g. only nine images or 1.000 iterations (resulting also in
significantly reduced training times). Without the proposed 3DGS
enhancements, performance increases with “pure” DFM4SfM are
less (SSIM +7.8%, PSNR +12.1%, LPIPS —20.0%).

SSIM 1t PSNR 1 LPIPS | Time (mm:ss) |
3DGS Ours | 3DGS  Ours 3DGS  Ours | 3DGS  Ours
Fern 0.68 083 | 21.16 2440 | 0.25 0.16 | 36:58  34:47
Flower | 0.71 091 | 22.06 29.36 | 0.26 0.09 | 29:47  19:29
Fortress | 0.87 091 | 27.84 3097 | 0.13 0.09 | 30:30 28:47
Horns | 0.80 092 | 2421 2841 | 0.18 0.10 | 35:44  29:36
Leaves | 0.64 0.70 | 18.68 20.31 | 0.31 0.26 | 3520 33:43
Orchids | 0.62 0.74 | 18.72 2092 | 0.22 0.16 | 37:56 34:01
Room | 0.91 096 | 27.70 31.76 | 0.12 0.08 | 19:24 17:23
Trex 0.89 093 | 2473  26.82 | 0.14 0.09 | 30:59  24:05
Mean 0.77 0.86 | 23.14 26.62 | 0.20 0.13 | 32:05 27:44

Table 1: Results for 3D Gaussian Splatting (3DGS) and 3DGS ini-
tialized with DFM4SfM (Ours) on NeRF-LLFF [MSOC* 19].

Scene

NeRF-LLFF

SSIM 1 PSNR 1 LPIPS | Time (mm:ss) |
3DGS Ours | 3DGS Ours | 3DGS Ours | 3DGS Ours
16 | 30000 | 0.68 0.83 | 21.16 24.40 | 0.25 0.16 | 36:58  34:47
12 | 30000 | 0.54 0.75 | 18.13  22.60 | 0.32 021 | 27:16  21:55
9 30000 | 0.52 0.69 | 17.58 2033 | 0.33 0.25 | 25:07  20:35
6 30000 | 0.48 0.65 | 16.60 18.86 | 0.38 0.27 | 21:23  19:19
3 30000 | 0.33 047 | 1338 14.75 | 0.52 0.44 | 19:37 18:34
16 | 15000 | 0.69 0.82 | 21.34 2417 | 0.24 0.16 | 15:54 15:43
16 | 5000 | 0.72 0.84 | 22.07 24.50 | 0.24 0.17 | 03:43 04:15
16 | 1000 0.57 0.76 | 19.59  23.66 | 0.51 0.26 | 00:37 00:45
16 | 500 0.50 0.66 17.68  21.68 | 0.61 0.41 00:19  00:25
16 | 100 0.49 0.53 | 1591 19.01 | 0.59 0.57 | 00:04 00:06

N Iters

Fern (NeRF-LLFF)

Table 2: Results with varying number of images (N) and
3DGS training iterations (Iters) for the scene Fern [MSOC*19].

Underlined: Ours surpassing 3DGS’s best with lower N and Iters.

4. Conclusion

We propose a well-distributed feature detection and geometrically
primed feature matching method for a DFM4SfM-optimized 3D
Gaussian Splatting initialization. It yields superior qualitative and
quantitative rendering results for scenes with sparse image data,
indicating potential for significantly accelerated 3DGS training.

References

[KKLD23] KERBL B., KOPANAS G., LEIMKUEHLER T., DRETTAKIS
G.: 3d gaussian splatting for real-time radiance field rendering. ACM
Trans. on Graph. (2023). 1

[MSOC*19] MILDENHALL B., SRINIVASAN P. P., ORTIZ-CAYON R.,
KALANTARI N. K., RAMAMOORTHI R., NG R., KAR A.: Local light
field fusion: practical view synthesis with prescriptive sampling guide-
lines. ACM Trans. on Graph. (2019). 2

[SVRLCL23] SEIBT S., VON RYMON LIPINSKI B., CHANG T.,
LATOSCHIK M. E.: Dfm4sfm - dense feature matching for structure
from motion. In IEEE Inter. Conf. on Img. Proc. Wksp. (2023). 1

[ZFIW23] ZHU Z., FAN Z., JIANG Y., WANG Z.: Fsgs: Real-time few-
shot view synthesis using gaussian splatting, 2023. 2

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



