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A first step towards the inference of geological topological operations

R. Pascual1 and H.Belhaouari2 and A.Arnould2 and P. Le Gall1

1MICS, CentraleSupélec, University Paris Saclay, France
2XLIM UMR CNRS 7252, University of Poitiers, France

Figure 1: Application of an inferred operation to assist procedural generation of a complex scene

Abstract
Procedural modeling enables building complex geometric objects and scenes in a wide panel of applications. The traditional
approach relies on the sequential application of a reduced set of construction rules. We offer to automatically generate new
topological rules based on an initial object and the expected result of the future operation. Non-expert users can thereby
develop their own operations. We exploited our approach for the modeling of the geological subsoil.

CCS Concepts
• Computing methodologies → Computer graphics; Mesh models; Symbolic and algebraic manipulation; • Human-centered
computing → Interaction design process and methods; • Software and its engineering → Automatic programming;

1. Introduction

In geometric modeling, the development of dedicated tools of-
ten requires expertise in both computer graphics and the specific
application field. This article proposes an approach to help non-
computer scientists develop their operations by inferring them from
a representative example and reconstructing them as rules in a pro-
cedural modeling approach. We infer the topological part of an op-
eration (leaving aside any geometric modification). This inference
is realized without prior knowledge, such that the obtained opera-
tion can then be applied in a broader context. We will illustrate our
approach within the field of geology.

2. Topological structure and modeling operations

To ease the design of new operations, we rely on a homogeneous
data structure called generalized maps or G-maps [DL14], consid-
ered as graphs [PLGAB22]. A node of the graph encodes part of

all topological cells, i.e., a vertex, an edge, a face, and a volume
simultaneously. We write modeling operations with the help of the
Jerboa framework [BALGB14] where an operation is defined as a
rule. The application of an operation requires finding an occurrence
of the left pattern and replacing it with the right pattern. Jerboa pro-
vides scheme rules that generalize the operation via a parameter ab-
stracting a topological cell. For instance, we can define operations
that modify a vertex, a face, or a surface. Both Jerboa rules and G-
maps offer a highly specialized framework that allows us to deduce
topological operations. We use a reverse-engineering approach to
check which variables produce a valid generalization based on the
intuition that a Jerboa rule generalizes an operation via a cell.

3. Inference workflow

We now discuss which steps are automated and which ones require
user interaction. Everything can be realized in a dedicated modeler
freely available online that we developed with Jerboa (https://
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tinyurl.com/inferencegeology/). First, the user builds
two instances of an object as a representative example of the op-
eration before and after its application. Secondly, the user selects
the parts of the object that should be taken into account to build
the operation, delimiting its scope. Thirdly, the user specifies a
mapping of some preserved elements. This step ensures that the
deduced operation properly preserved unmodified elements within
its scope. The last step is the topological folding algorithm and
exploits user-specified information to deduce a compatible oper-
ation. Before running the topological folding algorithm, the user
can specify a topological cell that should correspond to the rule’s
variable. If the topological folding algorithm provides an output,
the user obtains an operation applicable in a broader context after
generating the associated code via Jerboa.

4. Topological folding algorithm

The folding algorithm is intuitively built as a graph traversal finding
consistent relabelling functions, i.e., finding elements correspond-
ing to the same node or arc in the rule (see Algorithm 1 for a sim-
plified version). More details can be found in [PBALG21]. The al-
gorithm input consists of three elements: 1) the graph that contains
both partial G-maps linked along with preserved darts, 2) the topo-
logical cell used to parameterize the operation, and 3) a dart that
describes where the user would click on the object to apply the op-
eration. When visiting a link, the function arc_expansion (line 8)
links the dimensions that can be expended. For these dimensions,
we add an arc to the graph. The other arc extremity is deduced from
the input graph. When visiting a dart, the function build_label (line
9) considers the darts associated with a node and examines the arcs
between them. If this induced subgraph is isomorphic (up to rela-
belling) to the initial orbit, we deduce the relabeling function and
label the node accordingly. The function add_node (lines 3 and 10)
marks the darts associated with a node as visited and adds it to the
rule.

Algorithm 1: Topological folding algorithm
Input: A graph G encoding the preservation relation between two

partial G-maps, an orbit type ⟨o⟩, and a dart a of G.
Output: A graph S that encodes the Jerboa rule with ⟨o⟩ as

variable, given that the operation is applied at the dart a.
1 Q←∅, S ← ∅ // empty queue and empty ‘rule‘ graph

2 h← Node(G,⟨o⟩,a) // build the hook node

3 add_node(S,h) // add h to the ‘rule‘ graph

4 enqueue(Q,h)
5 while Q ̸= ∅ do
6 m← dequeue(Q)

7 foreach d ∈ [[0,n]]\ label(m) do
8 v← arc_expansion(G,m,d) // extend arcs

9 build_label(G,v) // deduce the relabeling function

10 add_node(S,v)
11 enqueue(Q,v)

12 return S

5. Application to geology

The modeling of the subsoil usually starts from a set of surfaces.
For instance, soil horizons are surfaces parallel to the soil split-
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Figure 2: Several possibilities for the layering operation: (a) no
inter-layer, (b) one inter-layer, (c) two inter-layers, (d) six inter-
layers based on the information described by (e), which is typically
obtained by geologists from a core sample.

ting the subsoil based on intrinsic properties. The question is then
how to fill the volume between the surfaces. Indeed, several inter-
layers might need to be added based on stratigraphic information
retrieved from core samples. In Figure 2, we present cases identi-
fied by a geologist. An application of the inferred operation (d) to
a more complex scene is illustrated in the teaser (Figure 1), after
the manual addition of all relevant geometrical information to the
inferred rules.

6. Conclusion

We presented a method to infer topological operations from their
description on a representative example. Our approach is highly fa-
cilitated by the regularity of the underlying model, namely gener-
alized maps, and the genericity of graph-based rules in Jerboa as a
solution to express modeling operations. Our algorithm essentially
tries to reverse the process of Jerboa’s rule instantiation by folding
a graph that encodes the parts of the object modified by the opera-
tion. We used our method to reconstruct operations in geology.
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