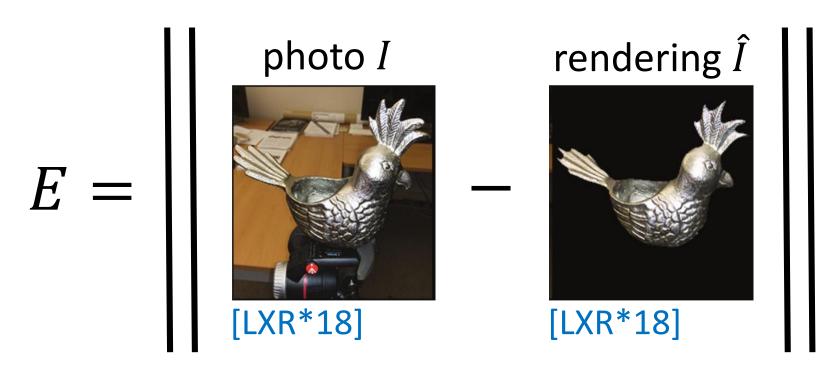


Fabric Appearance Benchmark

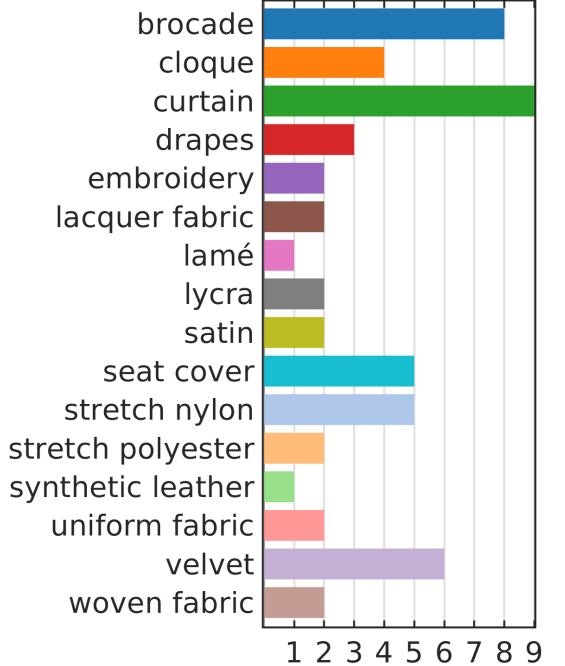

Sebastian Merzbach, Reinhard Klein

Introduction

How to evaluate your appearance modelling results?

• existing datasets & results often unavailable \Rightarrow most works only aim to reproduce appearance of their own measurements (usually new datasets)

\Rightarrow only validations, but often no comparisons


• no code releases \Rightarrow high re-implementation effort

Dataset

Extension of UBOFAB19:

- 56 new fabrics
- acquisition: X-Rite TAC7
- radiometrically calibrated, registered HDR images
- per scan: 768 images:
 - 100 polychromatic point-lit
 - 388 panchromatic point-lit
 - 280 panchromatic line-lit

class distribution:

- other fields have standardized benchmarks: KITTI, Semantic3D, SUN RGB-D, Princeton Shape, ...
- no benchmarks for appearance modelling so far
- through standardized testing, benchmarks enable lacksquarefair comparisons between existing and new works

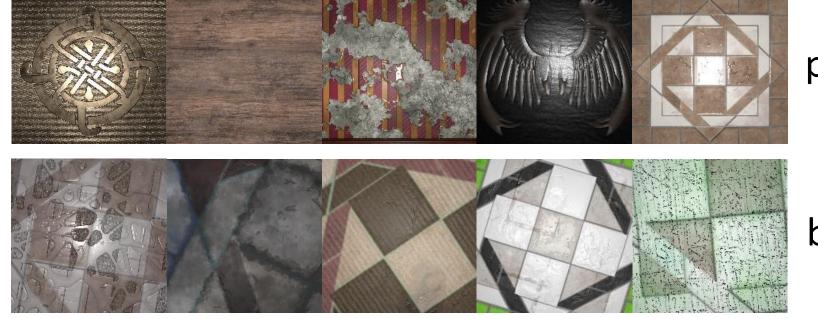
Benchmark Wishlist:

- real-world data
- versatile appearance \Rightarrow fabrics
- well-defined and accurate surface geometry
- posed as challenge for further participation incentive
- public leaderboard ${\color{black}\bullet}$

Related Work

Synthetic Data:

Overview with color highlights matching classes \uparrow


Public Release:

https://cg.cs.uni-bonn.de/appbench

Evaluation Set:

10% of poly- & panchromatic point-lit images

blended procedural SVBDFs [DAD*18], Adobe Stock SVBRDFs (Allegorithmic) on synthetic shapes [LXR*18]

procedural SVBRDFs, [DAD*18]

blended SVBRDFs , [DAD*18]

BRDF only:

MERL [MPBM03], OpenSurfaces [BUSB13], UTIA [FV14], SynBRDF [KGT*17], LIME [MMZ*18], EPFL RGL [DJ18]

Measured SVBRDFs: UBOFAB19 [MHRK19]

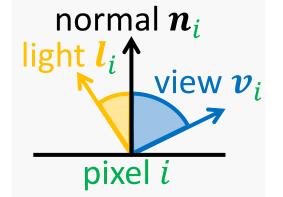
Measured BTFs: UBO14 [WGK14], UTIA [FKH*18]

fully released, no holdout sets \Rightarrow no fair challenge

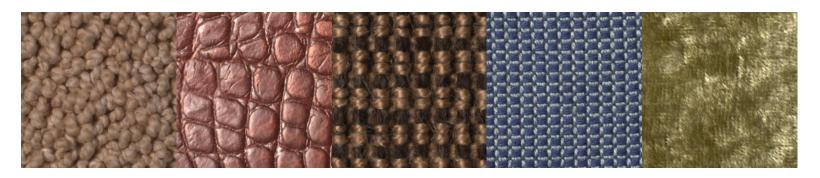
conditions

• only directional sampling publicly released

Evaluation

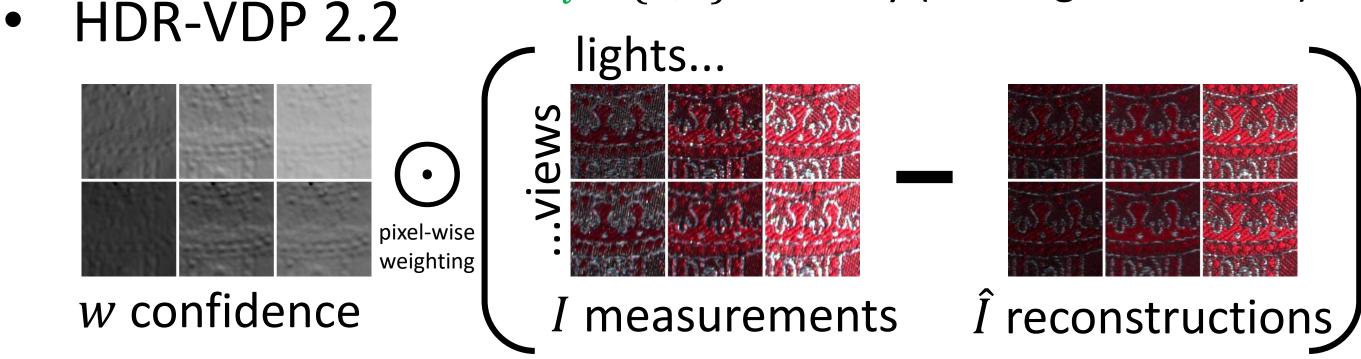

Standard Branch:

- participants evaluate their models on this sampling
- upload results to evaluation server
- automatic metric evaluation & ranking based on deviation of reconstructions \hat{I} from measuremnts ILocal Branch:
- nonplanarity \Rightarrow nonlocal effects (shadowing, ...)
- reduce nonlocal effects with pixel confidences w_i

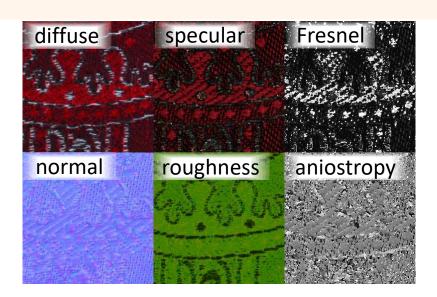

Metrics (M):

- $L_1 \& L_2$ errors SSIM lacksquare
- CIE ΔE_{2000}

Weighting: $\sum_{i} M(w \odot I, w \odot \hat{I})_{i}$


 $w_i = \min(m_i, \max(0, \langle n_i, l_i \rangle \cdot \langle n_i, v_i \rangle))$ $m_i \in \{0,1\}$: visibility (from light and view)

BTFs, [WGK14]


References

- Bell, Upchurch, et al.; OpenSurfaces: A Richly Annotated Catalog of Surface Appearance; TOG 32.24 (2013) [BUSB13]
- Deschaintre, Aittala, et al.; Single Image SVBRDF Capture with a Rendering-Aware Deep Network; TOG 37.4 (2018) [DAD*18]
- Dupuy, Jakob; An Adaptive Paramteterization for Efficient Material Acquisition and Rendering; TOG 37.6 (2018) [DJ18]
- Filip, Kolafova, et al.; Evaluating Physical and Rendered Material Appearance; TVC (CGI 2018) [FKH*18]
- Filip, Vavra; Template-Based Sampling of Anisotrpic BRDFs, CGF 33.7 (2014) [FV14]
- Kim, Gu, et al.; A Lightweight Approach for on-the-fly Reflectance Estimation; ICCV (2017) [KGT*17]
- Li, Xu, et al.; Learning to Reconstruct Shape and Spatially-Varying Reflectance from a Single Image; SIGASIA (2018) [LXR*18]
- Merzbach, Hermann, et al.; Learned Fitting of Spatially Varying BRDFs; CGF 38.4 (2019) [MHRK19]
- Meka, Maximov, et al.; LIME: Live Intrinsic Material Estimation; CVPR (2018) [MMZ*18]
- Matusik, Pfister, et al.; A Data-Driven Reflectance Model; TOG 22.3 (2003) [MPBM03]
- Weinmann, Gall, Klein; Material Classification Based on Training Data Synthesized Using a BTF Database; ECCV (2014) [WGK14]

Baseline Results

- X-Rite Pantora 1.6 SVBRDF fits
- single-lobe anisotropic SVBRDF
- spatially varying Fresnel term

