A Projection Mapping System onto a Human Body for Medical Applications
Ryo Fukuhara¹, Kazufumi Kaneda¹, Toru Tamaki¹, Bisser Raytchev¹, Toru Higaki¹, Soh Nishimoto² and Yohei Sotsuka²
¹Hiroshima University, Japan
²Hyogo College of Medicine, Japan

Abstract
In breast reconstructive surgery where patient’s abdominal fat and blood vessels are transplanted to the breast, it is very important to identify the course of the blood vessels inside the abdomen. In this paper, we propose a system for projecting blood vessels extracted from computer tomography angiography (CTA) on a patient’s abdominal surface to support the breast reconstructive surgery. The proposed system detects the position and orientation of a projector automatically using an image captured by a camera mounted with the projector and is able to project the exact course of the blood vessels onto an abdominal skin from an arbitrary direction. An experiment using an abdominal model fabricated from patient’s CTA data with a 3D printer demonstrates the usefulness of the proposed system.

CCS Concepts
• Human-centered computing → Mixed/augmented reality;

1. Introduction
In abdominal free flap breast reconstruction, it is required to identify and locate the blood vessels nourishing the abdominal fat. As a first attempt, Sotsuka et al. projected the blood vessels extracted from CTA data onto a patient’s abdominal body with a projector fixed to the direction of the sagittal axis and confirmed the usefulness of the projection mapping approach [S¹¹⁴]. Later, Hummelink et al. developed a projection method that does not fix the position of the projector [H¹¹⁶]. They used four markers placed on a patient’s body to align the projected image with patient’s body, but the method has a position shifting problem when projected from an oblique direction.

In this paper, we propose a projection mapping system, able to project the image onto a patient’s abdominal surface without any markers. The proposed system uses the umbilicus position and the outline of the body to align the patient’s CTA data with patient’s body. The proposed system always projects the blood vessels at the predefined position where the blood vessels are observed from the sagittal axis, even when the projected direction changes to oblique direction. The projection invariant to the pose of the project is important because the view of the doctor is the sagittal direction in surgery.

2. Proposed system
2.1. Process flow
The process flow of the proposed system is shown in Figure 1. The proposed system acquires the position and orientation of a projector using a camera attached to the projector (see Figure 2). (1) First, the system estimates the position and orientation of the camera in the umbilicus coordinates (see Figure 2) using a captured image and patient’s CTA volume data. (2) The position and orientation of the camera are converted into those of the projector. A conversion matrix consisting of rotation and translation matrices is obtained in advance employing a camera-projector calibration method.

In virtual space, the blood vessels nourishing the abdominal fat, the umbilicus, skin, and any parts of organs we want to project are segmented in advance from patient’s CTA volume data. (3) The Blood vessels and parts of organs inside the body are translated to the skin in the direction of the sagittal axis. This process makes it possible to project the blood vessels and parts of organs at the predefined position even when the projected direction changes to oblique direction. (4) An image for projection is generated by using a splatting algorithm that quickly calculates a volume-rendered image. The viewpoint and view direction of the rendered image are set to the position and orientation of the projector, respectively. (5) Finally, the rendered image is projected onto the patient’s body.

2.2. Estimation of camera’s position and orientation
The basic idea to obtain the position and orientation of the camera is to match the outlines of the abdominal body in a captured image and a volume-rendered image. That is, the problem results in find-
3. Experiments
We evaluated the proposed system using a scale 1/2.5 abdominal model fabricated from patient’s CTA volume data with a 3D printer (see Figure 4). The proposed system consists of a LED portable projector (AddTron Technology QUMI Q6) and an open platform camera (OLYMPUS AIR A01). These devices were mounted on the same platform (on the right side). A digital SLR camera on the left side was used for observing the results of the projection mapping.

Figure 6 shows the results of the projection mapping from three different directions: (a) 8° to the left, (b) the sagittal axis, and (c) 10° to the right. The blood vessels were projected in red. The umbilicus and the skin were also projected in blue and green to confirm the validity of the position and orientation of the projector acquired by our system. To evaluate the accuracy of our projection mapping, we calculated the Intersection-over-Union (IoU) of two regions: the skin of the abdominal model and the projected skin region in green. The IoUs of Figure 6 (a), (b), and (c) are 96.3%, 95.7%, and 91.2%, respectively. Comparing the results projected from different directions, as shown in Figure 6, it can be seen that the blood vessels are always projected at the same position on the abdominal surface in our system.

4. Conclusions
We proposed a projection mapping system for a medical application. The proposed system detects the projector position and orientation without any markers and always projects objects of interest inside the body at the same position on the human body even when the projected direction changes. Future work includes building a practical system based on the prototype system.

References