
Ashli – Advanced Shading Language Interface

Arcot J. Preetham*, Avi Bleiweiss†.

ATI Research.

Abstract
The support for IEEE floating point computation and the exposure of shading functionality in a standardize
API form have made graphics hardware a viable workflow solution to an artist involved in digital content
creation (DCC). Nevertheless, there still remains a significant interface void between the abstract shading
description an artist is used to and the low level shading constructs the hardware expec ts. We have developed
Ashli, an advanced shading language interface tool, with the primary motivation to bridge the interface gap
fore mentioned. Ashli is developed in the form of a case study. It takes in high level shading languages and
descriptions and at the end emits standard graphics hardware shading API (e.g. Microsoft DirectX and
OpenGL). Ashli‘s main contribution is in its seamless cooperation with the DCC graphics application. The
RenderMan®‡ Shading Language, Maya® Shading Network and 3ds Max® Standard Materials are the
subset of input abstraction we have experimented with to validate our approach. Shading path computation
complexity and conformance to hardware resource constraints are owned by Ashli and for the most part
made transparent to the artist. A tool like Ashli essentially retains rendered image appearance quality
comparable to the level produced by a software renderer, but at a significant higher rate of interaction
efficiency.

We present Ashli in the context of a stand-alone viewing application framework, depicting shading path
computation bound to scene rendering. We demonstrate the application design and results for using Ashli as
a shading coprocessor assist.

Keywords:
Graphics hardware, scene, rendering, shading, texture, shadowin g, vertex, color, normal

* Email: preetham@ati.com

† Email: avi@ati.com

‡ RenderMan is a registered trademark of Pixar.

1. Introduction

Digital content creation artists have relied primarily on
software renderers to produce photo realistic images.
Applications such as Maya® and 3ds Max® provide the
standard for an artist development environment. These
packages use shading descriptive scripts and visual
network builders to best serve an artist in producing
digital content. Software renderers are the ultimate choice
for flexibility and appearance quality to the user, but at a
cost of significant reduced interaction and overall
productivity. Graphics hardware renderers however, have
until now made very little integration inroads to actively
participate in a movie production workflow. The major

acceptance roadblock was the lack of fine computation
precision artists are used to.

Recently, graphics hardware has evolved to support IEEE
floating point in both arithmetic calculations and storage.
In addition, hardware shading functionality is exposed
through a low level programmable layer by each
Microsoft’s DirectX and OpenGL graphics interface
standards. These enhancements potentially restate
graphics hardware as a viable candidate for deployment
in a small subset of production workflow tasks. There still
remains though the interface void between the shading
development cultures the artist is used to and the low
level shading constructs the graphics hardware expects.
The motivation behind Ashli, an advanced shading

Pedro
EUROGRAPHICS 2003 / J. Flores and P.Cano

Pedro
Interactive Demos & Posters

Pedro
 The Eurographics Association 2003.

Pedro
Ó

http://www.eg.org
http://diglib.eg.org

language interface tool is to bridge the interface gap fore
mentioned. Ashli’s goal is to expose an almost identical
level of appearance quality artists enjoyed using software
renderers, but at a much higher interaction speeds.

2. Overview

The part of Ashli’s case study we present involves shaders
written in the RenderMan® Shading Language and in the
OpenGL Shading Language. The languages have many
references out there in the form of specifications [12, 15]
and books [1, 13]. It is recommended that as you go over
this document you have one of these references handy.
Ashli supports a modest subset of any of the languages.
Nevertheless, the functionality realized deems appropriate
to demonstrate relatively complex shaders displayed in real
time, when ran on recent graphics hardware.

The rest of the paper is organized in the following manner.
We first give a brief overview of Ashli core compiler in
Section 3. In Section 4 we present the Ashli Viewer
application design and methodology for interfacing with
both Ashli and the rendering engine. This follows by an
operational description of the viewer application, in
Section 5. Finally, in Section 6 we depict results of
rendered geometry bound with an assortment of material
and light shaders in the form of image snapshots.

3. Ashli

An application provides Ashli with a collection of
RenderMan® shaders e.g. displacement, surface, light,
volume and imager types or OpenGL shaders e.g. vertex
and fragment shaders. The collection of input shaders
forms an Ashli program, destined for compilation. Any
one of the shader types in the collection could optionally
be instantiated multiple times. Shader instancing applies
mainly to a scene of multiple lights, each of the same basic
type. Ashli is fairly agnostics with respect to the hardware
shading language API it emits. Incoming shaders are
translated to any of DirectX 9.0 Pixel Shader and Vertex
Shader Version 2.0 [8] or OpenGL ARB_vertex_program
[11] and ARB_fragment_program [10]. In addition, Ashli
generates a formals text data structure that specifies the
mapping of runtime appearance parameters onto hardware
shader resources such as input, constant and sampler
registers.

Often times, a complex high level shader may not fit into a
single low level shader program, which conforms to
hardware resource constraints. E.g. the number of any of
input, constant, temporary or sampler registers has been
exceeded, or instruction space reached its limits. Under
such conditions, Ashli breaks the complex shader into
many smaller segments (passes), where each segment uses
up resources within the prescribed hardware limits. This
process of breaking up complex shaders into smaller units
is known as multipassing. Ashli’s multipass
implementation is based on the technique demonstrated by
Chan et al. [5]. Ashli provides the artist a framework for
creating arbitrarily complex programs, avoiding hardware

resource limitation concerns. The reader is referred to [4]
for a more detailed description of Ashli core.

4. Ashli Viewer

Ashli Viewer is an application that demonstrates Ashli as a
shading coprocessor assist. It facilitates the user means for
previewing a modest subset of RenderMan® shaders or
OpenGL Shading language programs in real time. A scene
to be rendered is commonly composed of lights and
materials and is defined in the form of a scene file. Ashli
Viewer provides the framework for editing any of the
scene description and the shaders, compile the shaders
program and finally render a geometry model with the
hardware generated shaders, in real time. The user
previews the scene by moving lights and/or changing
properties of the lights and materials.

RenderMan

Shaders

Ashli Viewer

Scene
Parser

Render
Engine

Ashli

Scene
File

Constant
and Texture
mappings

Graphics
Hardware
API calls

Fragment
Programs

Formals
File

Formals
Parser

or OpenGL SL
Vertex
Programs

Figure 1: Block diagram of Ashli Viewer

Ashli Viewer is composed of a scene parser, a formals
parser and a rendering engine (shown in Figure 1). The
scene parser parses the scene file to identify RenderMan®
shaders or OpenGL shaders, which are sent as inputs to
Ashli. Ashli generates formals, vertex and pixel (or
fragment) programs from these high level shaders. The
formals parser takes the formals text data structure as input
and generates the following outputs for each pass: the
mapping of shader runtime parameters onto constant
registers and the binding of textures onto sampler registers.
The vertex program operates on geometry attributes such
as position, normal and texture coordinates destined to the
hardware pixel (fragment) processor input registers.
Similarly, appearance runtime parameters and textures are
set by the application in the pixel (fragment) processor.
The rendering engine renders the scene using
programmable shaders through a standard graphics API
calls (DirectX or OpenGL). In summary, the scene file is
translated with the help of Ashli and rendered on graphics
hardware.

4.1. Scene file

The rendering process requires a definition for the scene of
concern. The scene file is a simple text interface to
describe material properties of the geometric object, the
lights in the scene, atmospheric effects in the environment
and post rendering image processing filters. Every scene

Pedro
Ó

Pedro
 The Eurographics Association 2003.

Pedro
Arcot J. Preetham, Avi Bleiweiss / Ashli – Advanced Shading Language Interface

file contains one object with at least one material. The
material properties are described through RenderMan ® or
OpenGL shaders. The following discussion focuses on
scene files in the context of RenderMan® shaders. Scene
file formatting using OpenGL shaders is for the most part
identical with the addition of language specific keywords.

A list of lights used in the scene is specified along with the
light definition. The definition of a light includes the light
shader and its runtime parameters. The absence of runtime
parameters falls back into the use of default values
specified by the source shader. The modification of the
shader runtime parameters is realized by the use of user
interface sliders. Every runtime parameter is associated
with a slider. The user can optionally specify the range of
values for a slider. Alternatively, the user can make a
shader runtime parameter a constant using the keyword
const. Const’ing runtime parameters relieves hardware
shading resource usage and is highly encouraged by the
user, when possible. As a result, compute operations are
further simplified by Ashli to yield a more optimized low-
level hardware shader. For convenience, all runtime shader
parameters can be made constant by using the keywords
const all. Following is an example of a light definition
using a spot light shader with the runtime parameters
‘coneangle’ and ‘intensity’. The parameter ‘intensity’ takes
values in the range 0 to 1:

light spotlight.sl

float coneangle 0.4 range 0 1.0

const intensity 1.0

A volume shader for creating atmospheric effects, such as
fog or smoke, can be optionally specified. Following is the
definition of a fog volume shader, which takes a ‘fogcolor’
runtime parameter:

atmosphere fog.sl

color fogcolor 0.3 0.3 0.3

A scene should have at least one material definition
specified. A material is described by a material name and
is followed by an optional displacement shader and a
mandatory surface shader with each of their runtime
parameters. Following is a definition of a material named
‘table’, which uses a wood surface shader and its ‘grainy’
runtime parameter:

material table

shader wood.sl

float grainy 0.5

In the presence of more than one material in the scene, the
lights affect each of the materials independently. To have a
light runtime parameter affect all the materials in the
scene, the parameter has to be made common by the use of
the keyword common. Similarly, volume shader
parameters can be made common to affect all the materials
in the scene. For example, in the following definition, the

‘intensity’ runtime parameter of the spot light is common
to all materials:

light spotlight.sl

float intensity 1.0

common intensity

String type shader parameters are generally associated with
textures where a bitmap file should be specified. Keywords
SCENE or texShadowMap_n for string arguments signify
special meanings discussed later. Following is an example
showing a string parameter bound to a texture name
‘design.tga’:

string texturename design.tga

A background image can be added to the scene by
specifying the image file as shown in the following
example:

background skyline.tga

The scene file might contain initial geometry
transformation for an object. It is specified by any
combination of translation, scale and rotation offsets as
shown below:

translate z 5

scale y 1.2

rotate x 30

Post rendering image processing (e.g. blur filter, noise
reduction filter) is performed on the rendered scene
through imager shader execution. A list of imager shaders
can be specified in the scene file. The imager shaders are
applied in order to the rendered scene in a cascade manner.
All imager shaders take a string parameter, which is the
input texture for image processing. This parameter is
bound to the keyword SCENE in the scene file. It refers to
the most recent rendered scene. A hierarchy of scene files
is probably the most intuitive way to specify a series of
image processing operations, post rendering. Following is
an example that shows the use of a gaussianfilter imager
shader with runtime parameters ‘imagename’ and
‘kernelsize’.

include room.scn

imager gaussianfilter.sl

string imagename SCENE

float kernelsize 1.5

Shadows provide a very important cue to artists in placing
lights. The shaders for shadow casting lights should
contain the formal parameters to define from and to
positions. In addition, the string parameter representing the
shadowmap from light instance #n, should be bound to the
keyword texShadowMap_n in the scene file. This provides
a hint to the application to render shadowmaps from the
shadow casting light position. Light shaders casting
shadows can use multiple samples to avoid aliasing of

Pedro
Ó

Pedro
 The Eurographics Association 2003.

Pedro
Arcot J. Preetham, Avi Bleiweiss / Ashli – Advanced Shading Language Interface

shadow edges. The number of samples have to be specified
at compile time through the use of the const keyword. The
following example shows a shadow casting spot light with
runtime parameters ‘from’, ‘to’ and ’shadowmap’:

light spotlight.sl

point from 0 0 0

point to 0 0 -1

string shadowmap texShadowMap_0

4.2. Rendering

The rendering engine is built on top of both DirectX 9 and
OpenGL graphics API. The target graphics API is runtime
selectable in the application. The rendering unit sets up
hardware shading state into both the vertex and pixel
(fragment) processors and it binds hardware shaders with
the geometry destined for rendering. In the case of
multipassing, materials are each rendered progressively for
all the passes before moving on to the next material.
Intermediate passes are rendered into an IEEE floating
point component temporary buffer. A temporary buffer is
used as a texture in all subsequent passes. The availability
of floating point target buffers in the current generation of
graphics hardware (e.g. ATI Radeon 9700/9800, and
nVidia GeForceFX) provides arbitrary complex shader
decomposition without a loss of precision.

Floating point temporary buffers are also used in the case
of shadow map generation and post rendering image
processing. Shadow maps are generated, by rendering the
scene from the light position. Light position, object
position and object size are used to determine an
approximate viewing frustum for rendering from the light.
Percentage closer filtering technique is used to reduce
aliasing of shadow boundaries [14]. In this course of
rendering the floating point depth value of visible pixels
are stored in a temporary buffer [16]. Similarly, for scenes
containing imager shaders, the scene is rendered into a
temporary invisible floating point buffer, which is later
used as a texture in the imager pass.

Currently, the number of temporary buffers created in the
application is equal to the number of passes. Often, an
intermediate temporary buffer may not be needed through
the rendering of all the passes and can be reused as a target
buffer more than once. An optimal solution would be to
create only as many temporary buffers as required after
doing a live range analysis on the temporary buffers from
all passes and reusing the temporary buffers. This has been
implemented in other Ashli case studies where, native 3ds
Max® standard materials and Maya® shading networks
are rendered in real time [3, 6].

5. Demo

The Ashli Viewer demo runs on any graphics hardware
that supports supports DirectX 9.0 Vertex and Pixel Shader
Version 2.0 or OpenGL ARB_vertex_program and
ARB_fragment_program. Ashli Viewer framework

window (shown in Figure 2) has a program list in the left
column. Each program item contains a scene file and one
or more shaders. A scene file or a shader file is opened in
the center column by clicking on the item of interest.
These files can be edited and saved for subsequent
compilation and rendering. Hardware shading API target
(one of DirectX 9.0, OpenGL) is selected from the pull
down list below the left column. The user hits the
"Compile" button to generate hardware shading target
programs of the desired API. These programs are depicted
in the right hand column. Information on the number of
instructions and passes for each material is shown in the
status panel at the bottom. Target programs (vertex or
pixel) for any pass and any material can be viewed in the
column on the right panel by choosing a material and pass
from the pull down lists on the top. Alternatively, the user
can hit "Compile And Run" button to compile and render
the scene in one of two modes – Window or Full Screen. In
windowed mode, an additional window containing the
sliders representing shader formal parameters appear and
are used for runtime appearance control. Figure 3 shows a
scene rendered in window mode with slider controls for
manipulating the material properties.

6. Results

The Ashli demo package is available for public download
on ATI’s developer main website [2]. Screenshots of
several scenes rendered on an ATI Radeon 9700 are
shown.

In Figure 4, the object comprises of 3 materials – the base
is a simple specular surface, tusk is a matte surface, and
the elephant’s body is the classic RenderMan® wood [13]
shader. The scene has 5 distant lights, 2 of which cast
shadows. In Figure 5, the bunny is rendered with a cartoon
shader. In Figure 6, a full screen plane is rendered with the
flame procedural shader [9]. In Figure 7, the apple is
rendered using a procedural shader [7], and the scene has
two lights.

7. Acknowledgements

We would like to thank Dominik Behr and Seth Sowerby
for helping us with the rendering engine, Mike Huber for
the models and Mark Peercy and Raja Koduri for their
invaluable advice.

References:

1. Anthony A. Apodaca and Larry Gritz: Advanced
RenderMan®, Creating CGI for Motion Pictures,
Morgan Kaufmann Publishers 2000.

2. ATI Developer site: http://www.ati.com/developer/.

3. Dominik Behr: Rendering 3ds Max Standard
Materials on Hardware.
http://www.ati.com/developer/gdc/AshliMaxGDC.p
df.

Pedro
 The Eurographics Association 2003.

Pedro
Ó

Pedro
Arcot J. Preetham, Avi Bleiweiss / Ashli – Advanced Shading Language Interface

4. Avi Bleiweiss, Arcot Preetham: Ashli – Advanced
Shading Language Interface, To appear in Real
Time Shading Course Notes, Siggraph 2003.

5. Eric Chan, Ren Ng, Pradeep Sen, Kekoa Proudfoot,
Pat Hanrahan: Efficient Partitioning of Fragment
Shaders for Multipass Rendering on Programmable
Graphics Hardware. Proceedings of the
SIGGRAPH/Eurographics Workshop on Graphics
Hardware 2002.

6. Matt Komsthoeft: Rendering Native Materials in
Real Time.
http://www.ati.com/developer/gdc/AshliMayaGDC.
pdf.

7. Jonathan Meritt:
http://www.renderman.org/RMR/Shaders/JMShade
rs/JMredapple.sl.

8. Microsoft DirectX:
http://www.microsoft.com/windows/directx/.

9. Ken Musgrave:
http://www.renderman.org/RMR/Shaders/KMShad
ers/KMFlame.sl.

10. OpenGL Arb_Fragment_Program:
http://oss.sgi.com/projects/ogl-
sample/registry/ARB/fragment_program.txt.

11. OpenGL Arb_Vertex_Program:
http://oss.sgi.com/projects/ogl-
sample/registry/ARB/vertex_program.txt.

12. OpenGL Shading Language:
http://www.opengl.org/developers/documentation/g
l2_workgroup/.

13. Steve Upstill: The Renderman® Companion: A
Programmer's Guide to Realistic Computer
Graphics, Addison Wesley 1990.

14. William Reeves, David Salesin, Robert Cook:
Rendering Antialiased Shadows with Depth Maps.
Computer Graphics Forum 21(4): 1987.

15. RenderMan® Repository:
http://www.renderman.org.

16. L. Williams: Casting Curved Shadows on Curved
Surfaces. In Proceedings of Siggraph, 270-274,
1978.

Figure 2: Snapshot of Ashli Viewer showing the list of programs, RenderMan® shader and target
ARB_fragment_program.

Pedro
Ó

Pedro
 The Eurographics Association 2003.

Pedro
Arcot J. Preetham, Avi Bleiweiss / Ashli – Advanced Shading Language Interface

Figure 3: Snapshot of a rendered scene in window mode with the controls for adjusting the properties of the wood
material.

Pedro
 The Eurographics Association 2003.

Pedro
Ó

Pedro
Arcot J. Preetham, Avi Bleiweiss / Ashli – Advanced Shading Language Interface

Figure 4: Elephant rendered using RenderMan® wood shader and 5 distant lights with 2 of them casting shadows.

Pedro
Ó

Pedro
 The Eurographics Association 2003.

Pedro
Arcot J. Preetham, Avi Bleiweiss / Ashli – Advanced Shading Language Interface

Figure 5: Bunny rendered using a cartoon shader.

Pedro
 The Eurographics Association 2003.

Pedro
Ó

Pedro
Arcot J. Preetham, Avi Bleiweiss / Ashli – Advanced Shading Language Interface

Figure 6: Full screen quad rendered using a procedural flame shader.

Pedro
Ó

Pedro
 The Eurographics Association 2003.

Pedro
Arcot J. Preetham, Avi Bleiweiss / Ashli – Advanced Shading Language Interface

Figure 7: Apple rendered using a procedural shader and two distant lights.

Pedro
 The Eurographics Association 2003.

Pedro
Ó

Pedro
Arcot J. Preetham, Avi Bleiweiss / Ashli – Advanced Shading Language Interface

	p1: 1
	p3: 3
	p5: 5
	p7: 7
	p9: 9
	p2: 2
	p4: 4
	p6: 6
	p8: 8
	p10: 10

