
EUROGRAPHICS 2003 / J. Flores and P. Cano Interactive Demos & Posters

Point in Solid Tests for Triangle Meshes. Comparative Study.

Carlos J. Ogayar; Rafael J. Segura; Francisco R. Feito

Dpto. de Informática - Universidad de Jaén - 23071 - Jaén - España
{cogayar,rsegura,ffeito}@ujaen.es

Abstract
This document presents a comparative study of several point inclusion tests for triangle meshes. We also discuss
some issues about the usefulness of each method depending on the situation, taking into account memory and CPU
usage. The goal is to compare the performance of well known spatial classification algorithms with a modified
implementation of Feito-Torres, optimized to work only with triangle meshes. A description of studied methods is
also presented, with implementation issues and time tables showing the performance of each algorithm. The tests
highlight both weak points and virtues of each approach.

1. Introduction

There are lots of applications which use triangle meshes due
to their simplicity and versatility. Every object can be rep-
resented or approximated using triangle meshes, even more
when using 3D hardware acceleration. Point in solid test is
a very common task in Computer Graphics (face and edge
classification, collision detection, CSG, etc.). Several well
known methods are used with B-rep representations (spe-
cially triangle meshes) like Jordan curve theorem based al-
gorithms (which use ray-casting); other methods work with
a spatial structure like BSP, octree and grid. Each algorithm
has different efficiency, complexity and memory require-
ments, so no one should be considered as the best for all sit-
uations. One of the goals of this document is to compare the
most used point inclusion algorithms with a Feito-Torres2

modified implementation applied to triangle meshes.

2. Commonly used algorithms survey

2.1. Jordan curve theorem based algorithm

The most used schemes for both 2D and 3D point inclusion
testing are based in the Jordan curve theorem, due to its sim-
plicity and the fact that no precomputed data are needed.
This method works by casting a ray from the point to be
tested following a random direction and therefore intersect-
ing the solid several times (or none). The result of the test
depends on the intersections count parity. However, some-
times this process must be repeated (changing the direction
of the ray) when a special case is detected, i.e., when a vertex

or edge intersection, a face included point or a coplanar face
are detected in the process. As it should be expected, the
used ray-triangle intersection algorithm will clearly affect
the overall performance of the method. You are encouraged
to use the algorithm from Badouel1 or Möller-Trumbore7;
both use barycentric coordinates.

2.2. Spatial segmentation based point in solid tests

There are other methods based on a spatial structure like
grid, BSP or octree. They have a weak point: preprocess-
ing, which usually supposes high memory and CPU require-
ments.

2.2.1. Grid

A grid based algorithm uses an uniform space segmentation,
which results in a voxel space. Voxel is short for ’volumetric
pixel’, and each voxel represents a regular volume of space.
These cells can be totally or partially included in the solid.
In order to get enough precision in the solid representation,
a high definition grid is needed; in addition, partial inclu-
sion states must be taken into account. When using binary
voxels (only total inclusion/exclusion allowed) aliasing ap-
pears, specially at low resolution levels. Nevertheless, the
main problems of using a grid for inclusion testing are the
choice of the voxel inclusion test algorithm, and the waste
of space due to uniform (non adaptive) segmentation. As an
advantage, the grid traverse algorithm is very fast.

c© The Eurographics Association 2003.

http://www.eg.org
http://diglib.eg.org

Ogayar, Segura and Feito / Point in Solid Tests for Triangle Meshes

2.2.2. Octree

Problems arising with grids may be partially solved using
an octree8; moreover, an octree can be considered as a par-
ticular case of a grid. This time, the structure is adapted to
the solid spatial distribution (it is adaptive). The octree con-
struction begins with the bounding cube (not box) of the
solid. This is the first octant (the root node), which is sub-
divided into eight suboctants. This process is repeated until
each octant is completely inside or completely outside of the
solid, or other condition is achieved (e.g.: a given depth is
reached). Of course, the inclusion state of each octant must
be calculated using some method, like Jordan based algo-
rithm. This method greatly saves memory, and above all, re-
duces the number of inclusion tests while building the struc-
ture, because there are less octants to test than voxels in the
equivalent grid. As with grids, there are problems related to
aliasing and the performance of the point inclusion test used
in octant processing. The octree traversing is not as efficient
as the grid traversing; however, there are efficient algorithms
which dramatically reduce this difference.

2.2.3. BSP

BSP (Binary Space Partitioning)3, 6 consists of consecutive
space subdivisions using planes. The subdivision is done re-
cursively, so each subspace is divided again, giving as a re-
sult a spatial classifying tree. Two types of BSP are used in
Computer Graphics: axis aligned BSP and polygon aligned
BSP. The first one is not very suitable for inclusion tests, be-
cause it does not offer an exact representation of the solid (it
has the same problems as octrees and grids). On the other
hand, the second one is appropriate for these tests, because
it uses the planes where solid faces are included as splitter
planes. If a polygon is intersected by the current separating
plane during the subdivision process, it must be divided, and
each side has to be added to the corresponding subspace.
This task is repeated until all the planes containing a face
of the solid have been used. Obtaining an efficient BSP tree
is a time and memory demanding task. To classify a point
as inside or outside a solid using a BSP, it is enough to tra-
verse the tree testing the position of the point with regard
to the plane stored in each node. This process is recursively
repeated until a leaf node is reached.

2.3. Feito-Torres algorithm

Both Jordan based and spatial classification based algo-
rithms have an extra cost associated with the complexity of
the triangle mesh. This is because of the special cases (non-
valid intersections) in the first ones and the memory require-
ments in the second ones. Feito-Torres method2 does not
need any precomputing and it does not depend on the shape
of the solid. On the other hand, there are some optional opti-
mizations (related to precomputing) which dramatically en-
hance the performance. In addition, Feito-Torres algorithm

can easily treat convexities, holes and multiresolution repre-
sentations.

Feito-Torres works by considering the solid as made up of
original tetrahedra and calculating the sum of the signs from
the original tetrahedra where the given point is inside. Next,
the triangle adapted version is summarized. For each trian-
gle of the solid a tetrahedron is built using the origin of the
coordinate system as an additional vertex; this tetrahedron is
called an original tetrahedron. Then, all the original tetrahe-
dra that contain the point to be tested are selected (tetrahe-
dra may overlap), and their signs are calculated. Taking the
sum of the signs, the point is classified as inside (sign>0)
or outside the solid (sign<=0). Original tetrahedra are used
because the sign of a tetrahedron is computed by solving a
determinant, and the determinant related to an original tetra-
hedron is very fast to solve. Please, check2 for details.

3. Implementation

The main goal of this paper is to compare the results of some
algorithms under the same conditions. For this reason, an
homogeneous implementation was done (all code is C++).
There are some object oriented data types and structures,
which are common to all algorithms; moreover, all of them
use the same macros and tools. The implemented and tested
algorithms are Jordan based method, octree-optimized Jor-
dan based method, Feito-Torres, optimized Feito-Torres and
a BSP based inclusion algorithm. No other spatial subdivi-
sion algorithms were selected (Grid and Octree), because
they do not give exact results, unless combined with some-
thing else.

3.1. Jordan based algorithm

In order to apply Jordan curve theorem, Möller-Trumbore7

ray-triangle intersection algorithm has been used, but it was
modified to detect all special cases: a ray-vertex or ray-edge
intersection is found, or the ray and the triangle are coplanar.
This variant introduces a little performance penalty, but it is
necessary in order to keep the algorithm robustness. Each
time a special case appears, all the process has to be done
again using a different random ray. Indeed, this is the weak
point of Jordan based algorithm, which constrains to use a
high numerical precision.

The bottleneck of Jordan based method is the ray-triangle
intersection algorithm. In order to enhance the performance,
an octree has been used as a spatial optimizer in the opti-
mized version. Note that this octree is only used to discard
unnecessary ray-triangle intersections as it is usually done in
a ray-tracing task, so do not mistake it for the inclusion based
octree described before. In fact, both octree implementations
are the same, but this time, each leaf node keeps a list of
triangles that intersect the related octant5. Of course, it is
possible for a triangle to be in several lists, but it does not
matter. To traverse the octree, Gargantini traversal method4

c© The Eurographics Association 2003.

Ogayar, Segura and Feito / Point in Solid Tests for Triangle Meshes

Feito-Torres (opt) Jordan+octree6 BSP

vertices triangles time memory time memory time memory

Celtic Cross 1849 2366 <0.001s 61Kb 0.079s 135Kb 0.001s 408Kb
Hydrant 15822 5786 <0.001s 150Kb 0.188s 270Kb 1.282s 4.6Mb
Battery 4763 9522 <0.001s 285Kb 0.281s 401Kb 1.500s 720Kb
Mobile Phone 13025 25946 0.015s 674Kb 0.578s 281Kb 54.514s 158Mb
Golfball 23370 46205 0.031s 1.2Mb 1.188s 861Kb 72.484s 2.7Mb
V8 engine 76214 152553 0.132s 3.9Mb 4.469s 2.1Mb 514.141s 576Mb
Sculpture 139217 277512 0.235s 7.2Mb 6.687s 1.4Mb 442.109s 328Mb
Seat 282535 564960 0.502s 14.7Mb 15.219s 3.5Mb mem_error mem_error
Dragon 437645 871414 0.782s 22.5Mb 27.766s 4.2Mb mem_error mem_error

Table 1: Models data and their associated preprocessing cost. Time unit is second.

is used; with this method, the list of triangles to be inter-
sected is dramatically reduced; moreover, the deeper the oc-
tree, the smaller the triangle list. Indeed, with an efficient
octree traversal method, it is much better to use an octree
instead of a grid, because it saves a lot of memory.

3.2. BSP based algorithm

BSP based algorithm implementation is quite conventional.
The planes where solid faces are located are used to split
the space. If a dividing plane cuts any triangle, its associated
plane is added in both resulting subspaces; this produces a
huge tree when processing complex models, specially when
concavities are found. The implemented BSP construction
algorithm uses no recursion; it uses a stack instead, which
stores the branching state at every moment. This iterative
version is, by far, faster than the recursive version, and it also
uses less memory. The first implemented version of the algo-
rithm (which was recursive) collapsed all memory resources
with a not too complex solid. Moreover, the implemented
iterative BSP navigation is faster too.

3.3. Feito-Torres algorithm

The implementation of Feito-Torres algorithm uses only an
auxiliary function which computes the inclusion of a point
in an original tetrahedron. The main function calculates the
sum of the signed volumes of all the original tetrahedra
which include the given point. The optimized version has a
data structure where much of the required data during the in-
clusion testing are stored for each original tetrahedron; there
is no need for recomputing these data when changing the
point to be tested.

4. Results

The tests were done with 9 models, with a polygonal com-
plexity in the range from∼2500 to∼875000 triangles. Some
of them have lots of concavities and holes, which make them

very suitable to probe all solid shape dependent methods. Ta-
ble 1 shows the characteristics of the used models. The al-
gorithms were tested on a 2GHz Intel Pentium 4 PC with
512MB of RAM, working with Windows XP, which is a
standard home computer at this moment. Table2 shows the
results.

- Jordan based algorithm: This algorithm does not work
well when there is a high vertices and polygons density,
specially when concavities appear, as in V8 model (see
tables 1 and 2). In situations like these, intersection
computations must be repeated changing the outgoing
vector (the direction of the ray) until no special cases
are detected. The octree-optimized version (we used
a depth value of 6 in the tests) dramatically enhanced
the performance, greatly improving execution times,
although it needed some precomputing time and a
moderate amount of memory.

- BSP based algorithm: With no doubt, this is the fastest
spatial classification algorithm. The problem is the
extremely high preprocessing cost when dealing with
very complex models, both in time and memory (some
tests collapsed the system, even with an iterative imple-

Feito Feito(op) Jordan Jdn(op) BSP

Celtic Cross 0.875s 0.063s 0.969s 0.021s 0.001s
Hydrant 2.188s 0.172s 2.407s 0.031s 0.002s
Battery 3.578s 0.375s 3.907s 0.029s 0.007s
Mobile Phone 9.672s 1.359s 10.953s 0.172s 0.041s
Golfball 17.907s 2.406s 19.841s 0.062s 0.367s
V8 engine 55.152s 7.469s 639.841s 0.359s 0.167s
Sculpture 119.372s 13.910s 129.712s 1.031s 0.008s
Seat 237.971s 31.409s 264.324s 1.219s error
Dragon 336.879s 45.942s 3759.402s 1.781s error

Table 2: CPU times for a 1000 point inclusion test. Time
unit is second.

c© The Eurographics Association 2003.

Ogayar, Segura and Feito / Point in Solid Tests for Triangle Meshes

Feito Feito(opt) Jordan Jordan(opt) BSP

Efficiency good (6) quite good (7) moderate (5) very good (8) excellent (9)
Preprocessing time none (9) lowest (8) none (9) moderate (5)1 very high (2)2

Preprocessing memory none (9) moderate (5) none (9) moderate (6)1 very high (2)2

Solid shape dependency none (9) none (9) moderate (5) moderate (5) extreme (0)
Scalability (best case) excellent (9) excellent (9) quite good (7) very good (8) excellent (9)
Scalability (worst case) excellent (9) excellent (9) poor (2)3 poor (3)3 very poor (1)4

Difficulty of implementation very low (9) low (8) low (7) normal (6) normal (5)

Quality ranking values range from 0 (worst) to 9 (best)
1 It depends on the depth of the octree —2 It also depends on the shape of the solid

3 Due to special cases in intersection computations —4 Due to concavities and holes

Table 3: Features of the implemented point in solid methods.

mentation). BSP is very solid shape dependent.

- Feito-Torres algorithm: According to the tests results, this
method appears to be the most stable, scalable and effi-
cient point inclusion algorithm without any preprocess-
ing. Test times are slightly better than the best cases of
Jordan based algorithm; about -10%. Feito-Torres is solid
shape independent, so it maintains a constant linear rela-
tion with the number of polygons, no matter the num-
ber of concavities or holes the model could contain. Op-
timized version of Feito-Torres greatly lowers execution
times (about -85% from the standard version with almost
all solids) with an insignificant preprocessing time cost,
although a moderate amount of memory is required.

As a conclusion, a comment about each algorithm suit-
ability must be done (see Table3). Feito-Torres is the best
algorithm without precomputing. Intermediate solutions in
resource requirements are the optimized Feito-Torres and the
octree based Jordan (with a medium depth). Without mem-
ory limits and lots of points to be tested (which compensates
preprocessing), BSP is by far the best choice.

What is clear is the inverse relation between memory use
(preprocessing cost, in general) and performance when clas-
sifying points. The fastest algorithms need a data structure,
sometimes a huge structure, whereas algorithms which work
without precomputing or extra memory are not so fast. Con-
sequently, memory requirements are a key restriction for
choosing an inclusion method.

5. Conclusions

This work presents an evaluation of several point inclusion
methods for triangle meshes, plus a review of the capabilities
of each one. Feito-Torres algorithm is very robust and stable,
moreover, it does not depend on the shape of the solid. In-
deed, it appears to be more efficient than the Jordan based
algorithm as long as no precomputing is done. Bearing in
mind implementation easiness, Feito-Torres is an excellent
alternative to current existing algorithms.

Acknowledgements

This work has been partially granted by the Ministry of
Science and Technology of Spain and the European Union
by means of the ERDF funds, under the research project
TIC2001-2099-C03-03.

References

1. Badouel, D. An Efficient Ray-polygon Intersection, in
Graphic Gems.Andrew S. Glassner, Academic Press,
pp. 390–393, 1990.1

2. Feito, F.R. and Torres, J.C. Inclusion Test for General
Polihedra.Computer & Graphics,21(1):23–30, 1997.
1, 2

3. Fuchs, H., Kedem, Z.M., and Naylor, B.F. On Vis-
ible Surface Generation by A Priori Tree Structures.
Computer Graphics (SIGGRAPH ’80 Proceedings), pp.
124–133, 1980.2

4. Gargantini, I. and Atkinson, H.H. Ray Tracing an Oc-
tree: Numerical Evaluation of the First Intersection.
Computer Graphics Forum,12(4), 1993.2

5. Glassner, A.S. Space subdivision for fast ray trac-
ing. IEEE Comput. Graph. Appl.,4(10):15–22, October
1984.2

6. James, A. Binary Space Partitioning for Accelerated
Hidden Surface Removal and Rendering of Static En-
vironments. Ph.D. Thesis, University of East Anglia,
August 1999.2

7. Möller, T. and Trumbore, B. Fast, minimum storage
ray-triangle intersection.Journal on Graphics Tools,
2(1):21–28, 1997.1, 2

8. Samet, H. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, Reading, Massachusetts,
1989.2

c© The Eurographics Association 2003.

	p47: 47
	p49: 49
	p48: 48
	p50: 50

