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Abstract

For over two decades, the OpenGL API provided users with the means for implementing versatile, feature-rich, and portable
real-time graphics applications. Consequently, it has been widely adopted by practitioners and educators alike and is deeply
ingrained in many curricula that teach real-time graphics for higher education. Over the years, the architecture of graphics
processing units (GPUs) incrementally diverged from OpenGL'’s conceptual design. The more recently introduced Vulkan API
provides a more modern, fine-grained approach for interfacing with the GPU. Various properties of this API and overall trends
suggest that Vulkan could soon replace OpenGL in many areas. Hence, it stands to reason that educators who have their students’
best interests at heart should provide them with corresponding lecture material. However, Vulkan is notoriously verbose and
rather challenging for first-time users, thus transitioning to this new API bears a considerable risk of failing to achieve expected
teaching goals. In this paper, we document our experiences after teaching Vulkan in an introductory graphics course side-by-side
with conventional OpenGL. A final survey enables us to draw conclusions about perceived workload, difficulty, and students’ ac-
ceptance of either approach and identify suitable conditions and recommendations for teaching Vulkan to undergraduate students.

CCS Concepts

* Social and professional topics — Student assessment; * Computing methodologies — Rasterization;

1. Introduction

For many years, OpenGL has remained the default choice for teach-
ing undergraduate students the use of graphics APIs. Its high porta-
bility, as well as an extensive body of documentation, guides, and
tooling options (e.g., open-source software emulators), made it the
logical choice for accommodating students from different curricula.
However, there are clear indicators that we are at a juncture where
teaching OpenGL to undergraduate students is no longer adequate:
Its API design as a state machine is often considered bothersome
and, in many cases, no longer reflects the underlying hardware ar-
chitecture. More severely, several interesting and desirable features
of modern APIs, such as push constants or hardware-accelerated ray
tracing, are simply not supported by OpenGL. The practical reasons
for and against using OpenGL today are succinctly illustrated by
our own experience using it in research. In our work on fast multi-
view rendering [UKS*20], we already felt the age of OpenGL. Its
usage turned out to be more error-prone due to the lack of proper
error messages when compared to the modern low-level graphics
API of our choice: Vulkan [Khr22vk]. At that time, we decided
to stick with OpenGL, primarily due to its far-reaching support in
GPU profilers, quick prototyping ability, and less verbose written
code. For our work on computing and exploiting conservative mesh-
let bounds [UKPW21], we switched to Vulkan, since it abstracts
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the hardware on a lower level than OpenGL, offering more control
over the hardware, which is particularly desirable in the field of
real-time rendering. With rising proficiency in this new API and its
continuously improved tooling, we eventually noticed an increase in
productivity thanks to its invaluable validation layers and potent de-
bugging features. Vulkan provided us with more insights and more
control over the actual work that is carried out by GPUs, leading to
a better and more productive development experience once learned.
Consequently, our goal was set towards making the transition from
OpenGL to Vulkan also in teaching at our university. The positive
aspects of Vulkan are appealing, save for the small qualifier "once
learned" which is exactly the crux of the matter.

Before going into details, we should argue about why to select
Vulkan and not one of the other two major modern, low-level graph-
ics APIs: DirectX 12 [Msf22] and Metal [Apl22]. While all three
of these APIs are similarly aligned in terms of usage principles and
their level of hardware abstraction, only Vulkan is usable across
all major desktop operating systems and across device categories
(albeit only through an intermediate layer [Bre22] on Apple plat-
forms). Furthermore, it is an open industry standard defined by the
members of the Khronos group, which includes all major GPU man-
ufacturers, operating system manufacturers, and other individual,
academic, and industry members [Khr22me]. They all contribute to
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shape and maintain the Vulkan API, while DirectX and Metal are
proprietary standards, defined and controlled by one single company
each. Vulkan appears to be not only the most future-proof API, but
thanks to vendor-specific extensions new hardware features are ac-
cessible in a timely manner. E.g., hardware-accelerated ray tracing
was available through an NVIDIA-specific extension [Khrl8ray]
only one month after its availability in DirectX and has later been
standardized [Khr20ray]. Given these conditions, Vulkan is the only
sensible choice in university education in our opinion.

The challenge of learning Vulkan is revealed when comparing
source code and descriptive text for two of the most famous tutorials
for drawing a single triangle to the screen: The OpenGL tutorial
at LearnOpenGL.com requires fewer than 150 lines of code (LOC)
on the host side [dVri22]. In contrast, the de facto entry point for
learning Vulkan at vulkan-tutorial.com ends up with approximately
700 LOC for achieving the same task and requires a much more
extensive description for explaining the necessary setup leading up
to this point [Ove22]. The tutorials illustrate how Vulkan is indeed
an API that operates on a much lower abstraction level than OpenGL.
This implies that there are many more factors and talking points with
Vulkan that must be addressed (at least to some degree) if taught to
undergraduate students. On the other hand, a potential upside thereof
is that students receive a more fundamental knowledge about the
inner workings of a modern GPU—where conveying fundamental
knowledge constitutes a prime goal of higher education, anyways.

Computer science educators are in a position where they may
struggle to identify a clear path for teaching Vulkan effectively. In
many cases, an established course exists in the curriculum that relies
on older, higher-level APIs. The big challenge then becomes incor-
porating the introduction of Vulkan and facilitating the transition to
this new API for students, educators, and teaching assistants. This
is a delicate maneuver since a hasty transition could disrupt and
overwhelm each of these groups. In our case, we pondered different
strategies: adding a whole new course (which would have implied a
whole series of changes to subsequent courses in the curriculum),
sticking to OpenGL in bachelor programs and switching to Vulkan
in master programs, or trying to introduce Vulkan as early as possi-
ble as a complete replacement of OpenGL. We ultimately decided to
go with the latter strategy, as it turned out to be minimally invasive
curriculum-wise. Furthermore, we argued that it would constitute
the highest benefit for undergraduate students, if we would succeed
in introducing Khronos’ new low-level API properly. That latter
condition remained the big unknown since we expected learning
and teaching workloads to rise and hence required a fail-safe. Con-
sequently, in 2021, we doubled our teaching efforts and offered
students the choice to stick with battle-tested OpenGL or embrace
the new, exciting, uncertain, and potentially effortful Vulkan route.

Having finalized the conduction of the course in question, we can
conclude that the Vulkan route was much less bumpy than we ini-
tially expected, and therefore, we want to describe a pragmatic route
for transitioning teaching to Vulkan for undergraduate students who
possess fundamental knowledge of linear algebra, programming, a
basic understanding of rasterization and aim to use a graphics API
for the first time for real-time rendering. In this paper, we describe
the changes that we have made to our "Introduction to Computer
Graphics" course, outline our own experiences, and present results

from a student questionnaire, providing detailed insights into our
transition to Vulkan from the students’ perspectives.

2. Related Work

Fundamental difficulties of students learning computer graphics and
potential countermeasures are described by Suselo et al. [SWL17].
We consider the difficulties with respect to mathematics, trans-
forms and projections, and logical problem solving as preliminary
challenges to learning graphics programming. Introducing graph-
ics programming in an API-free manner is proposed by Chen et
al. [CXR18], which we see as an interesting pathway of education
before learning how to access graphics hardware through a modern
industry-standard API.

A possible syllabus for an introductory computer graphics course
has been described by Fink et al. [FWW12]. Even though their con-
cept of creating a comprehensive software-based rasterization frame-
work for teaching graphics programming concepts in a more abstract
and focused way is intriguing, the low-level aspects, which are cru-
cial in real-time rendering, are hidden away from students. Students
can obtain valuable insights from using an industry-standard graph-
ics API, and comprehensive documentation and literature can be
expected to be available for it in contrast to a proprietary frame-
work. Furthermore, a custom software-based rasterization frame-
work might be at high risk of diverging too much from developments
in the industry or causing high maintenance efforts.

Based on the analysis performed by Balreira et al. [BWF17], it
can be concluded that OpenGL was the most widely used graphics
API in university education, given the absence of any mention of
other graphics APIs in 2017. We consider our suggestions and
experiences described in this paper as being potentially relevant
to every department that is thinking about migrating from teaching
OpenGL to teaching Vulkan but also to those who already have
migrated. Experiences with the transition from legacy OpenGL to
modern OpenGL in university education are described by Reina et
al. [RME14]. They point to increased learning efforts in modern
OpenGL due to reduced out-of-the-box convenience compared to
legacy OpenGL. A similar point could be made when comparing
Vulkan to modern OpenGL.

While Vulkan may provide a reasonable learning curve for devel-
opers who are proficient with various other APIs, it is notoriously
difficult for students without prior experience. To fully appreciate
Vulkan, users require an in-depth understanding of the underlying
GPU hardware. The fine-grained control over work generation and
scheduling necessarily make Vulkan verbose. Hence, students are
confronted with the task of implementing a significant amount of
boilerplate code for leveraging hardware features they may not yet
fully understand. This situation is further aggravated by the absence
of in-depth teaching material for Vulkan: comprehensive, thoroughly
researched hands-on guide books, such as OpenGL’s famed "Red
Book" [SSKL13] or the "OpenGL Superbible" [SWH15] are not yet
available for Vulkan. Early attempts to provide additional abstrac-
tion or simplify the interface had only limited successl AMD18].
However, Vulkan as an API is still evolving. Recent additions
to the SDK, such as the VK_KHR_dynamic_rendering and
VK_KHR_synchronization2 extension aim to alleviate neu-
ralgic pressure points of the APL
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Figure 1: Visual results of implementing all mandatory subtasks for each of the five different assignments in our course.

3. Course Details and OpenGL Student Assignments

Our course "Introduction to Computer Graphics" targets bache-
lor/undergraduate students in their third semester and is usually
their second encounter with rasterization-based graphics pipelines,
but their first encounter with a graphics API. Rasterization is first
introduced in the preceding course "Introduction to Visual Comput-
ing", where students have to manually implement selected parts of a
rasterization pipeline such as polygon clipping and line rasterization.

There are five assignments throughout the course, the mandatory
tasks of which are listed in Table 1. There are also various bonus
tasks for those who want to learn about additional aspects or improve
their grade. We provide students with a small OpenGL framework
written in C++, which builds and links some helper libraries (GLEW
[Ste22], GLFW [Low21], and GLM [G-T21]), and provides a few
utility functions, such as drawing a teapot (with source code hidden,
used in the first two assignments), and loading images from file.

If students manage to complete every task on their own, they end
up having implemented the essential steps of a basic graphics engine
using the OpenGL API: loading (self-generated) geometry data into
GPU buffers, providing it to shader programs via vertex attributes,
providing all relevant matrices as uniforms to shader programs, and
rendering to the screen using custom (self-compiled and linked)
shader programs. Should students fail to implement any of these
functionalities on their own, we provide them with updated versions
of the framework after each assignment’s deadline, which contain
the functionalities that are required for subsequent tasks. Based on
our reference implementation, approximately 1200 LOC have to be
written or changed in C/C++ for the host-side code across all five
assignments. In addition, students need to implement approximately
200 LOC in GLSL shaders.

4. Transitioning to Vulkan

For transitioning the assignments to Vulkan, we wanted to stick to
the established OpenGL-based syllabus, even though we anticipated
that some tasks would differ quite severely in the implementation
requirements. Our goal was to offer students the same tasks, but
they would be able to select either OpenGL or Vulkan as their tech-
nological basis for the whole course—enabling a smooth transition
from one API to the other during this semester and future semesters
until we are confident enough to transition permanently. Offering
both an OpenGL route and a Vulkan route in the same course with a
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A# | Tasks

1 Creating a window; setting up a render loop (where a
teapot is drawn); reacting to user input
2 | Writing, compiling, linking, and using custom shader
programs; passing custom transformation matrices as
uniforms to shaders; implementing an orbit camera
and creating appropriate view matrices for rendering a
scene, enabling depth testing
3 Constructing geometric objects as indexed triangle
meshes (box, cylinder, sphere); loading the data onto
the GPU into vertex buffer objects and creating vertex
array objects; providing vertex positions as vertex at-
tribute to shader programs, enabling primitive culling
4 | Adding normals to geometric objects and passing them
as additional vertex attributes; implementing Phong
illumination [Pho75] combined with Gouraud shad-
ing [Gou71] and Phong shading [Pho75] in shaders;
illumination from different types of light sources
5 | Adding texture coordinates to geometric objects and
passing them as additional vertex attributes; loading
images into GPU memory, creating mipmaps, sam-
pling from textures in shaders

Table 1: Course assignments and their subtasks

fixed budget of three credit hours (according to the European Credit
Transfer and Accumulation System [Eu22]), we strove to create
similar workloads for students of either route. Hence, given a LOC
budget of 1200 and the knowledge that drawing a single triangle via
the Vulkan API already requires 700 LOC, we had to introduce more
utility functions to the framework we provide to students. We tried
to find the ideal balance between not sacrificing too much of the
learning experience w.r.t. the Vulkan API and reducing implementa-
tion time. In the following, we describe which abstractions we ended
up providing through the framework for each of the assignments.

In the first assignment, we let students create a Vulkan instance, a
surface, select a physical device, create a logical device, queue, and
swap chain manually. They directly interface with the Vulkan API
for these tasks, because we consider it valuable to let students get in
touch with each one of these fundamental types. The remainder of
the required initial application setup is abstracted by the framework,
namely installing a debug callback, framebuffer, and render pass
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creation, as well as the creation of the synchronization primitives
(semaphores and fences) for swap chain handling [Khr22vsa]. If
these had to be set up by students, complex concepts like image
layout transitions and synchronization would have to be learned for
the first assignment at the beginning of the course already, which
we deemed to constitute a too steep learning curve. Students must
provide the created handles with additional configuration parameters
(e.g., clear color values) to an initialization function. The resulting
render loop implementation after completing Assignment 1 leads to
C/C++ source code like shown in Listing 1.

// Instance, surface, physical and logical device,

// queue and swap chain config are prepared by

// students before calling the init function.
ecgInitFramework (inst, surf, phys, dev, g, swpcfg);

while (!glfwWindowShouldClose (window)) {

// Handle user input:
glfwPollEvents () ;

// Wait for swap chain img to become available:
ecgWaitForNextSwapchainImage () ;

ecgStartRecordingCommands () ;
ecgDrawTeapot () ;
ecgEndRecordingCommands () ;

// Present rendered image to the screen:
ecgPresentCurrentSwapchainImage () ;
}
Listing 1: Render loop implementation after completing the
first assignment. The parameters to the framework initialization
function refer to handles of types VkInstance, VkSurfaceKHR,
VkPhysicalDevice, VkDevice, VkQueue, and a custom
configuration struct containing required swap chain parameters.

With this approach, we manage to defer teaching image layout
transitions and synchronization to a much later point in the course.
Not before Assignment 5, students have to use these for image
loading and mipmap creation. The downside is that students do
not interface with Vulkan directly in terms of swap chain handling
and command buffer recording. Instead they use framework utility
functions (those with "ecg" prefixes). The code of the abstracted
functionality in Listing 1 amounts to 300 LOC (not counting the
functionality of graphics pipeline creation). Tasking students with
implementing these functions on their own during Assignment 1
would have required bigger restructurings of the assignments and
most likely would have required the removal of some tasks in later
assignments. While it would not be strictly required to draw some-
thing to the screen for fulfilling the tasks of Assignment 1, letting the
framework draw the red teapot of Figure 1a to the current swap chain
image provides students with additional feedback on whether their
setup code is in a proper state, in addition to possible framework or
Vulkan validation error messages.

The creation of custom graphics pipelines is the subject of As-
signment 2. The required Vulkan code constitutes another 80 LOC,
just for graphics pipeline creation, which is why we decided to
provide a framework function for it with hard-coded configura-
tion values for many parameters. A few parameters can be con-
figured via a custom struct, which is shown in Listing 2. It only
supports vertex and fragment shader stages for the creation of graph-
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ics pipelines. Vertex input attribute descriptions translate directly
to Vulkan’s VkPipelineVertexInputStateCreateInfo.
It is supposed to be set up for streaming vertex positions during
Assignments 2 and 3, to be extended by vertex normals during
Assignment 4, and by texture coordinates during Assignment 5. Fur-
ther configurable parameters are the polygon drawing mode and the
primitive culling mode, both relevant for Assignment 3 (Figure 1c
shows the effects of drawing polygon edges as line segments with
back-facing triangles being culled). The last member is a set of
descriptors, stating all resources that are used in custom vertex or
fragment shader programs, which is internally required for pipeline
layout creation. For simplicity, we support only one descriptor set,
but other than that, we do not abstract or simplify descriptor han-
dling. Instead, students must handle descriptor set layout creation,
descriptor set allocation, and descriptor writes manually in Assign-
ments 2 to 5. Several uniform buffers have to be created for storing
per-frame uniform data, such as colors and transformation matrices
for different objects. Results are shown in Figure 1b.

struct EcgGraphicsPipelineConfig
{
const charx vertexShaderPath;
const char* fragmentShaderPath;
std::vector<vVkVertexInputBindingDescription>
vertexInputBuffers;
std::vector<VkVertexInputAttributeDescription>
inputAttributeDescriptions;
VkPolygonMode polygonDrawMode;
VkCullModeFlags triangleCullingMode;
std::vector<vVkDescriptorSetLayoutBinding>
descriptorLayout;
bi
Listing 2: Auxiliary configuration struct with required parameters
for custom graphics pipeline creation.

We refrain from introducing SPIR-V [Khr22spv], and from let-
ting students compile shader modules on their own, but handle these
parts internally in the framework using glslang [Khr22gsl]. This
further reduces student workload so that they can focus on shader
development. Compilation errors get displayed conveniently in the
console. Further functionality that is abstracted by the framework
is memory handling for buffers and images. Listing 3 shows the
declarations of the relevant framework functions, the implemen-
tations of which amount to another 100 LOC. To render students
aware of the fact that memory must actually be handled explicitly in
Vulkan, we have chosen corresponding expressive function names
(including the word "memory") and described them in detail in our
documentation.

VkBuffer ecgCreateHostCoherentBufferWithBackingMemory
(VkDeviceSize, VkBufferUsageFlags);

void ecgCopyDataIntoHostCoherentBuffer (VkBuffer,
const voidx, size_t);

void ecgDestroyHostCoherentBufferAndItsBackingMemory (

VkBuffer) ;
VkImage ecgCreateImageWithBackingMemory (uint32_t,
uint32_t, VkFormat, VkImageUsageFlags);

void ecgDestroyImageAndItsBackingMemory (VkImage) ;

Listing 3: Convenience functions for creating buffers and images,
provided by the framework, which handle their associated device
memory internally, opaquely to the user.
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For enabling depth testing in Assignment 2, a new image can
be created through the function shown in Listing 3, specifying a
suitable format and usage flags. Its handle must be provided via the
custom swap chain configuration struct, as described in Listing 1.

In Assignment 3, one framework convenience functionality is
removed, namely automatic command buffer recording. It was han-
dled opaquely inside the framework for the first two assignments
as shown in Listing 1. Starting with Assignment 3, students are
required to manually implement command recording in order to
pass further vertex attributes to graphics pipelines, and also for
transferring image data from buffers into images.

Assignment 4 focuses on shader development and encourages
students to use the framework tools they have become acquainted
with during the previous assignments. This mostly refers to the cre-
ation and proper usage of additional custom graphics pipelines (for
supporting different illumination methods, as shown in Figure 1d)
and uniform buffers for object data and light source data.

In Assignment 5, important concepts are introduced, namely the
usage of sampled textures in shaders, synchronization, and image
layout transitions. The framework provides functions for loading
images from file directly into host-visible buffers. Backing buffers
with host-visible memory simplifies their usage since they do not
require explicit synchronization, which was exploited in previous as-
signments. Image memory, however, is allocated in device memory.
We explain to students that this leads to more performant rendering,
but it also makes synchronization necessary when texture data is
transferred from host-visible buffers into the backing memory of
images. Students are required to create images, create command
buffers, record proper layout transitions via image memory barriers,
transfer the image data from a buffer to an image in device memory,
submit the command buffers to a queue, and wait for their com-
pletion with a fence. All of these operations are to be performed
using the Vulkan API directly. Our framework does not provide any
further convenience functionality for these tasks of Assignment 5.

5. Didactic Advantages of Using Vulkan

One side effect of Vulkan’s verbosity is that it necessarily reveals
more and more underlying hardware details as students progress.
Investigative minds are not easily satisfied by following a list of
instructions they cannot comprehend. In order for them not to be
deterred, Vulkan forces its users to deal with several important con-
cepts discussed in this section that OpenGL does not. Consequently,
instructors must address the underlying processes and hardware
modules, while in OpenGL, the same use cases may "just work"
because the details are handled by drivers internally. Therefore,
OpenGL is less likely to encourage investigations of what is go-
ing on under the hood. Just by using a low-level graphics API like
Vulkan correctly, educators are forced to convey more fundamental
knowledge about modern GPUs and their architecture.

Vulkan implicitly conveys that switching between different shader
programs is never free, as one might come to believe when develop-
ing applications based on OpenGL exclusively. Instead, whenever
a different shader program shall be used, a whole new graphics
pipeline must be created with all its bulk of configuration parame-
ters. The extensive code blocks required to achieve this in Vulkan
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reflect that changing shaders is rather invasive to the rendering setup
and implies potentially heavy-weight changes. Users are encouraged
by the design of the API to prepare all potentially required pipelines
upfront, selecting the appropriate one during render loop execution.
In OpenGL, the driver usually hides this complexity and instead
instantiates pipelines dynamically on-demand, reducing the amount
of control the user has over the application’s runtime performance.
For example, when the primitive culling mode shall be changed, that
change can occur during render loop execution, which can lead to
an expensive operation being performed within the render loop.

When a uniform buffer is used to store per-frame data specific
to a certain object (e.g., transformation matrices), the same buffer
cannot be used for storing per-frame data of another object to be
drawn in the same frame in most situations. Recording the drawing
of multiple objects into the same command buffer requires the usage
of different uniform buffers for the objects’ per-frame data since
otherwise unwanted effects occur. If, for example, the same host-
visible uniform buffer was used for two objects, only the last write
to this uniform buffer would succeed due to data being written at
queue submission time [Khr21vsp]. These factors force users of
the API to think about the reasons why this occurs. Developing
these thoughts further, it becomes clear that modern GPUs work
in a massively parallel way, which can also mean that both objects
from our example are processed in parallel. As such, there must be
different uniform buffers—one for each object—accessible during
parallel processing of the objects. In OpenGL, again, users do not
have to think about these aspects. Uniforms can just wildly be set and
used, and rendering "just works", producing the correct result. Users
are not forced to think about the modus operandi of modern GPUs
and, in the worst case, might think that draw calls are processed in a
sequential or host-synchronous manner.

Synchronization, in general, is largely hidden from the API user
with OpenGL, bearing the danger of drawing false conclusions
about the actual command processing on the hardware. Vulkan, on
the other hand, does not hide the responsibility of properly syn-
chronizing commands from its API users, putting the massively
parallel nature of modern GPUs into the spotlight. The necessary
synchronization must not only be explicitly defined within shaders or
between pipeline stages but also between the individual GPU queues
that may receive and schedule incoming work. For students who
desire to understand and exploit synchronization on a fundamental
level, Vulkan provides an additional benefit over older graphics
APIs, namely a clearly-defined memory consistency model, which
is similar to the well-established C++ memory model [Hec18].

Another area where OpenGL hides vital concepts that affect
virtually all modern GPUs is command buffer recording. Commands
are simply issued on the fly in OpenGL, completely concealing the
possibility of recording and reusing chains of commands, let alone
the possible performance implications of command recording. In
order to remain efficient, the driver usually caches and organizes
these commands, again performing vital work in the user’s stead.
In Vulkan, all of these concepts are revealed to users so that they
are forced to think about the motivation for their presence. From
a didactic point of view, achieving a better insight into the inner
workings of modern graphics devices can never be wrong.
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Figure 2: Number of student submissions for all five assignments.

6. Student Feedback

At the beginning of our university winter term in 2021, we offered
all of our "Introduction to Computer Graphics" students the choice
to choose between OpenGL and Vulkan. This course is mandatory
for undergraduate students enrolled in the bachelor program "Media
Informatics and Visual Computing" and optional for other students.
Since our Vulkan framework was brand-new and we did not have
any prior student feedback, we deployed a corresponding warning
message and told them that they should expect up to 150% of the
required effort, compared to the OpenGL route. From a total of 123
initial students, 17 (14%) opted for the Vulkan route. 81 students
completed the course, among them 10 students (12%) who chose
the Vulkan route. In this section, we present insights from a detailed
questionnaire that was completed by 52 OpenGL students (73%
of total OpenGL students who completed the course) and by 9
Vulkan students (90% of total Vulkan students who completed the
course). A diagram showing the development of numbers of student
submissions over the whole course is shown in Figure 2.

Figure 3 shows how students who chose the OpenGL route com-
pare to the students who chose the Vulkan route in terms of how they
perceived the five assignments according to the categories workload,
difficulty, and usefulness of the respective API. The exact wording
of our questions was as follows:

e How was the workload of Assignment X in your opinion? (An-
swers ranging from "There was almost nothing to do" (-2), over
"Adequate workload" (0), to "Too much effort" (2))

e How was the difficulty of Assignment X? (Answers range from
"Too easy" (-2), over "Difficulty was ideal" (0), to "Too hard" (2))

e Do you think that the skills/topics you picked up during Assign-
ment X will be useful in your future career? (Answers ranging
from "Not useful at all (-2) to "Extremely useful" (2)).

Interestingly, the assessments of both groups of students are simi-
lar for Assignments 2 to 5, which is a good sign since it indicates
that the transition to Vulkan did not have a major impact in these
regards. Only for Assignment 1, we can observe a higher rating of
workload and difficulty for the Vulkan version, which is unfortunate,
as it might have contributed to the higher dropout rate of Vulkan stu-
dents (24%) between Assignments 1 and 2 compared to the dropout

rate of OpenGL students (14%). For the subsequent assignments,
dropout rates were similar (see Figure 2) for both groups.

The box plots in Figure 3 represent students’ perceived workload,
i.e., whether they felt that the necessary workload was appropriate
for an assignment or not. The box plots in Figure 4 present students’
estimates (or actual amounts) of hours spent on the mandatory tasks
per assignment. It can be infered that the initial effort for the Vulkan
version of Assignment 1 was higher than for its OpenGL counterpart.
The time investments for all other assignments, though, were similar
for both groups, while the minimum outliers point towards a slightly
higher baseline in terms of required effort across all assignments for
the Vulkan assignments. Interestingly, Vulkan students appeared to
require less time for Assignments 2 and 3 than OpenGL students.
Across all assignments, the maximum outliers indicate a lower upper
bound of effort. This could be an effect of possibly higher motivation
levels among Vulkan students, though, since they have chosen the
Vulkan route despite our initial warning message about potentially
higher workload, which we were unable to estimate beforehand. On
the other hand, 0% of students had prior experience with Vulkan,
while 21% of OpenGL students already had prior experience with
the API of their choice. Tables 2 and 3 list further reasons for our
students’ choice in favor of one API or the other.

Reasons given by students for choosing Vulkan | %0
Wanted to learn this API 100%
The provided framework seemed to be in a better state 33%
Vulkan is more relevant for game development 11%
More modern API 11%

Table 2: Reasons of Vulkan students for choosing Vulkan. The sec-
ond column states the percentage of Vulkan students who declared
the respective reason.

Reasons for choosing OpenGL %
Wanted to reduce the effort required to do this course | 60%
Wanted to learn this API 38%
The provided framework seemed to be in a better state | 25%
The task descriptions seemed to be clearer 25%
Already had experience with this API 21%

Table 3: Reasons given by students for choosing OpenGL. The sec-
ond column states the percentage of OpenGL students who declared
the respective reason.

With 60%, the strongest motivator of OpenGL students was to
avoid the potentially higher workload of the Vulkan route. With only
38% of OpenGL students deliberately wanting to learn the OpenGL
API, there is a lot of potential for getting students interested in
learning a different API. Our newly introduced Vulkan framework
seems to have deterred 25% of OpenGL students, but on the other
hand, 33% of Vulkan students assessed it to be in a better state than
its battle-tested OpenGL counterpart. Students had the chance to
take a look at both frameworks and at the assignment descriptions
of both routes before deciding upon which route to take. Although
we provided much more extensive and detailed task descriptions for
the Vulkan assignments, 25% of OpenGL students declare them as
a reason for their choice in favor of OpenGL. None of the Vulkan
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Figure 3: Students’ assessments of the assignments, with respect
to workload, difficulty, and usefulness, all rated on a scale from
low (-2) to high (2), where 0 means adequate, perfect, and medium,
respectively for the different categories.

students mentioned the task descriptions as a deciding factor, but
78% of Vulkan students found them helpful even as a learning re-
source for Vulkan overall, as shown in Table 4. The same amount of
students in this group found the Vulkan specification helpful, while
vulkan-tutorial.com was mentioned as a helpful learning resource
by the largest number of students. With the intent of explaining
fundamental Vulkan concepts in a vivid and comprehensible way,
we started producing new Vulkan lectures and provided them to our
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Figure 4: Hours it takes to complete all mandatory tasks per assign-
ment, as reported by students.

students repeatedly throughout the course via the "Vulkan Lecture
Series" [Tuw21]. Unfortunately, some episodes were running late
and, thus, were not available to our students timely. We hope that
providing these lectures right from the beginning of the semester
leads to better and faster learning success.

Vulkan resource %
vulkan-tutorial.com [Ove22] 89%
Vulkan specification [Khr21vsp] 78%
Assignment description documents 78%
"Vulkan Lecture Series" on YouTube [Tuw21] 44%
Official Khronos examples [Khr22vsa] 33%
Sascha Willems’ tutorials and examples [Sas22t; Sas22e] | 22%

Table 4: Reported learning resources of Vulkan students.

As far as problems during implementation of the assignments are
concerned, a larger amount of OpenGL students mentioned prob-
lems with graphics API usage than their colleagues on the Vulkan
route. Graphics API usage turned out to be problematic to 52% of all
OpenGL students (see Table 5), while only 22% of Vulkan students
reported problems with direct Vulkan API usage (see Table 6). One
reason for the high percentage of students declaring problems with
C/C++ programming stems from the fact that many students get in
touch with C++ programming for the first time during this course in
their bachelor program. Many had mainly experience with the Java
programming language and had not used C or C++ before. Although
the Vulkan framework contains a lot more functionality than its
OpenGL counterpart, and generally Vulkan students must interface
with the provided framework on more occasions, framework usage
was not declared as being problematic by a larger fraction of Vulkan
students when compared to the fraction of OpenGL students report-



38 J. Unterguggenberger et al. / The Road to Vulkan

ing problems with framework usage (see Tables 2 and 3). Overall,
Vulkan students stated to be pretty happy with the framework’s level
of abstraction (see Figure 5a). Some had even hoped for a lower
level of abstraction for Assignment 1, although the workload of
Assignment 1 was rated as being too high (see Figure 3b). These
students were eager to acquire the knowledge about the details of
the abstracted functionality. Nevertheless, Vulkan students were
generally satisfied with their learning experience (see Figure 5b).

Problems with the OpenGL route | %
Graphics API usage (direct OpenGL API usage) 52%
Programming in C/C++ 42%
Using the provided OpenGL framework 35%

Table 5: Biggest problems of OpenGL students during development.

Problems with the Vulkan route | %
Programming in C/C++ 56%
Using the provided Vulkan framework 33%
Graphics API usage (direct Vulkan API usage) 22%

Table 6: Biggest problems of Vulkan students during development.

Figure 6 shows that both groups of students think that Vulkan is
much harder to learn than OpenGL. OpenGL students are indecisive
whether OpenGL or Vulkan might be more helpful in their further
studies, while Vulkan students lean towards Vulkan in that regard.
Each group of students thinks that their respective API of choice will
be more useful for working in the industry, while Vulkan students
show a higher degree of confidence. A multi-platform framework for
Windows and Linux was strongly requested by some of our students.
We plan to accommodate this request for the course framework in a
similar way as we have added multi-platform support to our Vulkan
frameworks Auto-Vk [Cg22avk] and Gears-Vk [Cg22gvk].

7. Conclusion

We successfully employed Vulkan for teaching the use of a real-time
graphics API in an introductory course. Abstracting some function-
ality of early assignments was key to enabling a manageable and
fair workload. Flattening the learning curve of Vulkan for first-time
graphics API users enabled us to provide a similar challenge as pre-
viously established OpenGL assignments. However, initial difficulty
and workload were still rated higher, leading to a higher drop-out
rate after Assignment 1 among Vulkan students. We plan to coun-
teract this undesirable effect by providing more relevant learning
resources early on and extending the period until the deadline by
1-2 weeks. Interestingly, the biggest hurdle for many students was
C/C++ usage, constituting a bigger problem for Vulkan students
since they had to write more code in Assignment 1. More efficient
C/C++ learning resources and lectures should allow students to fo-
cus on graphics API usage. Difficulty and workload ratings of the
other assignments converged mostly for both groups of students.

Our proposed assignment structure enables the step-wise introduc-
tion of increasingly challenging concepts, such as synchronization
and image layout transitions, at a later point in the course. These
concepts are still vital to students for becoming proficient users of

T
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Figure 5: Vulkan students’ assessments of the assignments, with re-
spect to the framework’s level of abstraction, and their API learning
experience. The level of abstraction is rated from a too low level of
abstraction (-2), over a perfect balance between learning the API
and saving time (0), to a too high level of abstraction (2). Learning
experience ranges from having learned nothing (-2), over a medium
amount (0), to having learned a lot (2) about the Vulkan API.
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Figure 6: "Harder" refers to the question: "Which API do you think
is harder to learn, OpenGL or Vulkan?". "Studies" refers to the
question: "Which API do you think will be more useful during your
studies, OpenGL or Vulkan?". "Industry" refers to the question:
"Which API do you think would be more useful for working in the
industry, OpenGL or Vulkan?"

modern graphics APIs, so students should get in touch with them
at least briefly—even in an introductory graphics course. Using a
low-level API enables students to learn about the massively parallel
operation mode of modern GPUs early in their visual computing ed-
ucation. Our evaluation has shown that students appreciate the skills
and knowledge they picked up through using the Vulkan API. We
believe that teaching Vulkan is both viable and beneficial to students
who aim to become competent practitioners of visual computing.
While the transition may be challenging, it appears to be a worth-
while investment to provide students with future-proof education.
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