EUROGRAPHICS 2017/ J. J. Bourdin and A. Shesh

Education Paper

Designing a computer graphics course for first year undergraduates

Neil A. Dodgson & Andrew Chalmers

Victoria University of Wellington, New Zealand

Abstract

We document the challenge of designing a technical computer graphics course for undergraduate students who have taken only
a single undergraduate programming course and have not yet had to take any mathematics beyond high school. This course is
the introduction to a major in computer graphics within a Bachelor of Science degree. We needed an introduction to the rigour
of computer graphics that would attract students to continue with the major, that would provide a useful foundation for that

major, and that could be attempted with minimal prerequisites.

1. Introduction

In the 2016 academic year, Victoria University of Wellington intro-
duced a major in Computer Graphics into its Bachelor of Science
degree. The structure of the major is shown in Figure 1. One feature
of the major is that students are able to take the first-year introduc-
tory computer graphics paper (CGRA151) having taken only a sin-
gle introductory programming course and with no guarantee that
they have taken any university-level mathematics. The challenge
was to design a course that was accessible to such students.

The traditional approach to undergraduate computer graphics
teaching is to have an introductory course at third or fourth year
level within a computer science major [Ohl86]. This gives plenty
of scope for students to acquire necessary programming and math-
ematical skills prior to meeting computer graphics. As part of the
new major, Victoria University had decided that is was vital that
there was at least one first-year course explicitly in computer graph-
ics, in order to attract students to the major. Further, this course
should ideally be accessible to students from outside the major, who
may have yet to take any university-level mathematics.

We discuss the motivation for the design of the overall major
(Section 2) before delving into the detail of how we constructed
our first-year course in computer graphics, covering choice of pro-
gramming language (Section 4), syllabus (Section 5), assessment
(Section 6). We follow this with our reflections on the tutors’ expe-
rience (Section 7) and lessons learnt from the first year of running
the course (Section 8).

2. Design of a major in computer graphics

The major was introduced with advice from and in collaboration
with the New Zealand visual effects and computer games industry.
Our aim is to produce graduates who can be employed within those

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.

DOI: 10.2312/eged.20171020

industries, with a higher level of skills useful to the industry than
would be achieved from a straight computer science degree.

We are aware of the research that shows that it is unhelpful
to graduates to design a degree that produces a jack-of-all-trades,
someone who knows a little about all aspects of games or effects
but is master of none of them [LH11]. These industries need both
amazing artists and brilliant programmers, each of whom should
ideally have some understanding of and sympathy for the other.
We therefore focussed on producing, within the Bachelor of Sci-
ence, a major that would produce graduates who were immersed
in the technical programming skills, but we also included a couple
of courses from the University’s design degree, to give graduates
some understanding of how those on the artistic side are trained
and how they are taught to think.

The first year, as designed, contains four strands: programming,
mathematics, graphics, and freely chosen options. In the graph-
ics strand is, first, the School of Design’s standard introductory
course on using Maya, followed by the new introduction to com-
puter graphics, described in detail in this paper. The Maya course
has no prerequisites; the new computer graphics course, taught by
the School of Engineering and Computer Science, requires only a
single programming course as prerequisite. In addition to the ma-
jority constituency of science students, the course is also open to
engineering students who want a taste of computer graphics and to
design students who want to experience a more rigorous program-
ming course; this allows those on the artistic side of the discipline
an opportunity to see how the technical students are trained.

3. Overview of the first-year course

The course, as taught in 2016, ran over twelve teaching weeks. It
comprised 34 lectures and 12 laboratory sessions, with laboratories
alternating between tutorial sessions (in odd weeks) and marking

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/eged.20171020

10

N.A. Dodgson & A. Chalmers / Designing a computer graphics course for first year undergraduates

Year 1 DSDN132 COMP102 ENGRI1217

Term 1 Intro. to Maya Intro. to Programming Intro. to Algebra option
Year 1 CGRAI51 COMP103 ENGR123 ENGR122
Term 2 Intro. to CG Data Structures and Algorithms Logic and Probability Calculus
Year 2 MDDN241 COMP261 NWEN241

Term 1 Advanced Maya Algorithms and Data Structures Systems Programming option
Year 2 CGRA251

Term 2 | Computer Graphics option option option
Year 3 CGRA350 COMP307* COMP313*

Term 1 Real-time 3D CG Artificial Intelligence Game Development option
Year 3 CGRA353

Term 2 Image & Video option option option

Figure 1: The structure of the three-year Bachelor of Science majoring in Computer Graphics. Each term contains four courses. The graphics
strand is the leftmost column, with one course each term. The option courses allow students to pair the computer graphics major with further
computer science courses, with mathematics or physics, or with other design courses. Notes: *COMP307 and COMP313 are recommended
but can be replaced by other computer science courses. TENGRI121 is the Engineering Introduction to Algebra course; students taking the
computer graphics major are required to take this mathematics course but it is not a prerequisite for CGRA151 as that course is designed
to be accessible to design students and others who have not taken a university maths course.Course code abbreviations: CGRA Computer
Graphics, COMP Computer Science, NWEN Network Engineering, ENGR Engineering Mathematics, DSDN Design, MDDN Media Design.

sessions (in even weeks). The course coordinator (ND) prepared
all the course materials and gave the majority of the lectures. He
was assisted by another lecturer who handled two weeks of lec-
tures and set one quarter of the final exam. We recruited a team of
eight tutors, from amongst postgraduate and advanced undergrad-
uate students. One of those tutors (AC) assessed all of the assign-
ments prior to their release to the students and helped coordinate
the team of tutors.

The course had five marked programming assignments (worth
30% of the final mark), a mid-term test (10%) and a final examina-
tion (60%). This emphasis on the final examination is typical of our
first year courses. Courses in later years tend to have more focus on
assignment work.

In the first year of giving the course there were 163 students,
with an 82% pass rate. Of those 163, twelve (7%) failed to en-
gage fully with the course, either by not sitting the exam or by
submitting fewer than three of the five assignments. The students
were drawn from the Faculties of Science (79 with 76% pass rate),
Engineering (78, 88% pass rate), Design (4, 50% pass rate), and
Commerce (2, 100% pass rate). A further 66 students pre-registered
for the course (41 science, 10 engineering, 8 design, 7 others) but
withdraw, mostly before the course started but a few in the first
two weeks of the course. Of the 163 students registered on the
course, student records show that 97 (60%) had previously taken
a university-level algebra course.

4. Choice of programming language

Students coming onto the new course take introductory program-
ming through one of two routes. Most were expected to come in

through the computer science route (in either Science or Engineer-
ing), having taken an introductory course in Java (COMP102). A
minority were expected to come in from Design, having taking a
creative coding course taught in Processing. We had the choice of
using one of these or of introducing a new language. We discussed
using Python or C++, as both of these are needed later in the major
and both are important in the visual effects and post-production in-
dustry. A compelling case can be made for teaching Python [Jen04]
and it has become the most popular introductory teaching language
at top US universities [Guo14]. However, it was thought inappropri-
ate to introduce a dramatically different language to students who
were only beginning to consolidate their programming ability. It
was especially inappropriate when the purpose of the course was
to teach computer graphics concepts rather than programming per
se. Similar arguments apply to C++, though the complexity of that
language meant that it was never a serious contender.

The choice thus came down to teaching with Java, using an in-
house graphics library, or with Processing. Processing [RF15] is a
programming language explicitly designed to be accessible to and
usable by artists and designers. Reas and Fry created it . . . to teach
the fundamentals of computer programming within a visual con-
text, to serve as a software sketchbook, and to be used as a pro-
duction tool.” [RF14]. Schweiter et al. chose Processing for their
introductory computer graphics course precisely because it is well-
suited to people with minimal programming experience and as a
rapid prototyping tool [SBG10]. For our purposes it is important
that Processing is primarily aimed at producing visual output and
has an excellent in-built graphics library. It has a nicely designed
development environment and it is trivial to produce visual results
within the first five minutes of using the environment. It is based

(© 2017 The Author(s)
Eurographics Proceedings (© 2017 The Eurographics Association.

N.A. Dodgson & A. Chalmers / Designing a computer graphics course for first year undergraduates 11

on Java and almost everything a student knows about Java can be
transferred directly to Processing. We therefore settled on Process-
ing, despite misgivings from some staff that the majority of students
would be having to handle Processing simultaneously with learning
more advanced Java programming on the concurrent Data Struc-
tures and Algorithms course. The strong similarities between the
two languages allowed us to argue that the students would largely
be consolidating their programming skills and that this outweighed
any confusion over the minor differences between the languages.

5. Syllabus

Students were permitted to take this introductory course without
having taken any university mathematics course. We therefore de-
pended on high school mathematics and we knew that there would
be a wide variation in mathematical ability in the class. This had a
dramatic effect on the syllabus that could be taught. When we con-
sider other, similar courses, we find that rather more mathematical
ability is assumed. For example, Paquette assumes at least basic
skills in calculus, linear algebra and trigonometry [Paq05], while
Shesh, who explicitly discusses the problems of students who are
struggling with mathematics, assumes students will have taken at
least two university-level calculus courses and a discrete mathe-
matics course [Shel5].

For the course content, we drew heavily on material already
available from the course-coordinator’s previous second-year com-
puter graphics taught at the University of Cambridge. This had
been originally designed in the 1990s around Foley et al’s semi-
nal text [FVvDFH90], with updates added year-on-year. It was itself
influenced by the previous course at Cambridge, taught by the late
Neil Wiseman, which had its roots in the 1980s. However, both of
these earlier courses assumed significant undergraduate-level math-
ematics prerequisites, and so we had to be selective in what was
re-used, what was modified, and what was completely new.

We faced an interesting challenge. We wanted the course to con-
tain rigorous material that would form the foundation for teaching
advanced algorithms in future years, which meant that we could
not use a textbook aimed at artists and designers, such as that by
Reas and Fry [RF14]. On the other hand, the graphics textbooks
aimed at computer science and engineering majors tend to assume
considerable mathematical prerequisites.

We chose to use one of the standard texts as a basis for
the course: Shirley and Marschner’s Fundamentals of Computer
Graphics [SM09]. A quick glance through this book will reveal
that, as expected, much of what is taught depends heavily on math-
ematics. Therefore our introductory graphics course of necessity
includes a mathematics primer and is selective in which parts of
the text it references. It was also necessary to use a Processing
text [RF15] and to provide high-quality lecture material compris-
ing copies of slides with substantial accompanying notes. Both text
books were made available electronically through the University
Library, meaning that students had to spend no extra money on
hard copy resources. We were unable to secure electronic rights
to the most recent (fourth) edition of Shirley and Marschner, so the
students had access to the earlier (third) edition, which is equally
useful for a course of this nature.

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.

The course was structured around four main themes:

Programming in Processing. Here we drew on the Reas and Fry’s
texts [RF14,RF15] to provide a solid introduction to using a 2D
graphics library. Because all of the assignments were to require
programming, this part of the course needed to be taught first. We
used it as a refresher to reinforce what students had previously
learnt in their introductory programming course. With regard to
programming, our aim was that they should apply what they al-
ready knew rather than constantly having to learn new control
structures and data structures.

Fundamental algorithms. In addition to teaching student how to
use a particular graphics library, we wanted to teach some of the
simpler algorithms that form the foundation of computer graph-
ics. We wanted students to understand the fundamental ways in
which a graphics card converts a library call into drawing indi-
vidual pixels. We chose a number of straightforward short al-
gorithms that demonstrate the range of operations required, and
also the types of optimisations that can be made to these algo-
rithms. The algorithms were: line drawing (DDA, Bresenham,
Midpoint), circle drawing (Midpoint), Bézier spline drawing, tri-
angle filling, polygon filling, line clipping, and polygon clipping.
One important consideration in the choice of algorithms was to
show how the same ideas recur in different contexts. For exam-
ple, the line drawing algorithm is used in Bézier spline draw-
ing, is modified to make a circle drawing algorithm, and forms
part of a triangle filling algorithm. This part of the course thus
forms a series of practical examples in algorithm design. All of
these algorithms are presented in 2D. Paquette comments: “In
every introductory CG course, many topics such as curves and
transformations are first introduced in 2D and then extended to
3D... [but] bringing the same topic from 2D to 3D is not a triv-
ial extension” [Paq05]. We believe it is justifiable to stick to 2D,
given that the students are in their first year and will have further
courses in which to explore 3D computer graphics.

Underlying mathematics. In addition to algorithms, we needed
to lay foundations for the more advanced mathematics in later
courses. We needed to teach basic vector and matrix algebra,
which was a refresher for most but not all students. We used
these to show how transforms are implemented in homogeneous
coordinates in 2D and 3D, tying this into the an explanation of
how Processing internally implements its various transformation
operations. We also had to teach algebra required by some of the
algorithms: in particular, how to find the closest distance from
a point to a line, and how to find the intersection point of two
lines. These again allowed us to demonstrate how algorithms are
designed and how implementations can be optimised.

Human vision and display technology. The final quarter of the
course had to be material that was not required on any of
the practical programming assignments, as the final assignment
started before this material was lectured. It was a relatively
straightforward decision to use this part of the course to teach
on human vision and display technologies: a range of topics that
are accessible to anyone with a high school education. We cov-
ered the human visual system, the fundamental limitations of hu-
man vision, its implications for the design of displays, a range of
display technologies including LCD, DMD and printers, and the
various colour spaces used in computer graphics.

12 N.A. Dodgson & A. Chalmers / Designing a computer graphics course for first year undergraduates

LTI T 1T M|
L L I I T ATATTIET AT
LTI T I T
(1T I T
LI T II LTI T1
1T I}I Il

IIIIII II”II IIII IIIIIIIIIIIII_IILL“urII]Tfh

Figure 2: Two of the examples of controlled randomness that stu-
dents had to reproduce for Assignment 1 Completion.

6. Programming assignments

The course had five programming assignments, worth a total of
30%. These offer models for others to refashion for other courses.

The first four of the five assignments all followed Victoria Uni-
versity’s conventional model for computer science assignments,
where an assignment has three parts:

Core worth 65%. This is work that is accessible to a C-grade stu-
dent. Successful completion gives at least a pass mark.

Completion worth 25%. This completes the work undertaken in
the Core. It is accessible to a B-grade student but will be a stretch
for a C-grade student.

Challenge worth 10%. This takes students well beyond the Com-
pletion part, consolidating what has been learnt in a new chal-
lenge. It should be completable by A-grade students but may be
a stretch even for them.

This structure acknowledges the wide range of programming ex-
pertise in any given class. It allows the less able students to achieve
a pass mark in an assignment while giving the most able something
challenging to get their teeth into.

On the new computer graphics course, each assignment was
accompanied by a work sheet. The work sheet took the student
through a range of small Processing exercises, which prepared the
student for the assignment. Students had a laboratory session every
week. In odd weeks, the tutors were available to help with the work
sheet and the assignment. In even weeks, tutors marked students’
work in one-on-one sessions allowing direct feedback and also al-
lowing them to check that the student understood their submission.
The first four assignments, briefly, covered the following.

1. Introduction to Processing. The Core and Completion were
based on exercises in the texts by Reas and Fry [RF14, RF15].
The accompanying work sheet introduced some concepts related
to randomness in computer graphics, and the Completion exer-
cises consolidated this by requiring students to produce output
with carefully controlled randomness (Figure 2). The Challenge
in this assighment was to create a piece of ‘art’. The idea here
was to allow students to exercise freedom of expression rather than
being limited to following a set of instructions slavishly. At this
point, students had had only three lectures and were still getting to
grips with Processing. Nevertheless, some interesting ideas were

@] A2Comp

IS | S | O | m—
| | O | —
| | s | —
I | N | S | m—

I Il |

Figure 3: One student’s solution to Assignment 2 Completion.

investigated. A video of some of the best is available on Vimeo:
https://vimeo.com/195207746

2. Basic physical simulation. This assignment was based on
BreakOut, the simple bat and ball game (Figure 3). The Core exer-
cise was to implement a 2D bouncing ball (a circle) that bounced
off the sides of the window and off a movable rectangular bat con-
trolled by the mouse. The accompanying worksheet prepared stu-
dents for this by leading them through creating a ball that moved
horizontally and bounced off the left and right side of the window.
Completion was to add a series of rectangular targets that changed
colour after each hit and would eventually (after sufficient hits) van-
ish. Challenge was either to make a bat of arbitrary orientation with
correct bouncing, or to use multiple balls, bouncing correctly off
one another. The majority of students found that the Challenge was
beyond them. In addition, we discovered that, while it is straight-
forward to bounce a ball off a static object, it is challenging to get
the ball to collide correctly with a moving bat and most students
were unable to get this interaction to work correctly.

3. Curves and transforms. The aim of this exercise was to get
students comfortable with handling cubic Bézier and Catmull-Rom
splines, both of which are built in to Processing, and to be able
to handle transforms. The idea was that the student would create
a series of C1l-continuous spline curves that would form a ‘road-
way’ (Figure 4) and then a shape (a ‘car’) would move along this
spline path, keeping itself correctly oriented at all points. The ac-
companying work sheet showed how to do this for Bézier splines.
The assignment required students to implement the same idea for
Catmull-Rom splines. We found that the work sheet had explained
the mechanism in such detail that there was little challenge in con-
verting from Bézier to Catmull-Rom, and that the intention to teach
the use of transforms was compromised by the students being able

(© 2017 The Author(s)
Eurographics Proceedings (© 2017 The Eurographics Association.

https://vimeo.com/195207746

N.A. Dodgson & A. Chalmers / Designing a computer graphics course for first year undergraduates 13

Figure 4: An exemplar for Assignment 3: the orange squares are
the control points of a series of Catmull-Rom cubic splines, which
students were required to allow to be moved using the mouse. The
spline itself drawn as a broad grey stroke. on top of a slightly
broader black stroke, giving the look of an edge to the stroke. Five
‘cars’ are represented by oriented triangles.

to copy and paste code without needing to understand how the
transforms worked. The Challenge was to prevent the ‘cars’ from
hitting one another. Few students attempted this and it is extremely
challenging to get collision detection to work in all situations.

4. Polygon clipping algorithm. This was the only assignment
in which students attempted to implement one of the fundamen-
tal computer graphics algorithms. We asked the students to im-
plement the Sutherland-Hodgman reentrant polygon clipping al-
gorithm [SH74] [FvDFH90, §3.14]. The Core was to implement
clipping against a single infinite edge. Completion was to complete
the reentrant algorithm. A further requirement was to implement a
user interface so that the user could move any polygon vertex on
either the clipping or clipped polygon (Figure 5). The Sutherland-
Hodgman only clips against a convex polygon, so the Challenge
was to implement an algorithm that clipped any two arbitrary poly-
gons against one another, regardless of convexity. The assignment
was designed to test learning of the algorithms and ability to im-
plement the necessary mathematics (finding the intersection of two
straight lines). We were disappointed at the number of students who
found this difficult, which indicates that we need to spend more of
the course on the basic mathematics. One mistake we made here
was that we did not provide a work sheet for this assignment, trust-
ing by this point that students would be able to handle an assign-
ment without needing a lead-in. We were wrong. On the other hand,
we had a small number of students who made a good attempt at the

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.

Figure 5: An exemplar for Assignment 4. The solid orange squares
are the control points of the clipping polygon. The heavy-bordered
squares are the vertices of the polygon to be clipped. All of these
can be moved by the user. The clipped polygon is outlined and
shaded in blue. The clipped parts are in grey.

Challenge, which required exploration of algorithms that were not
taught in the course.

6.1. Capstone project

The final assignment was designed to finish the course with a cap-
stone project that gave the students considerable creative freedom.
It was also designed to ease students from first year to second year
ways of thinking. In first year, all assignments are small, deadlines
are weekly (or every two weeks), and they are highly structured. In
second year, assignments are larger, take longer, and require better
time-management as it becomes impossible to complete an assign-
ment successfully by starting the night before the deadline.

The final assignment was to create a 2D game or ‘interactive art
work’ of the student’s own design. Students were told about this on
Day 1 of the course, to give lots of time to think about possibilities.
They were given one week to write and hand in a one-page plan,
which was discussed with a tutor before they started programming.
They were then given three weeks in which to do the programming.
Many students made initial forays into programming before getting
formal approval, which is to be encouraged because part of good
planning is to test out potential ideas.

As part of the one page plan they were required to commit to
deliverables at the end of each of the three weeks of programming.
Our recommendation was that, by the end of Week 1, all of the crit-
ical components of the project worked, at least roughly, and that,

14 N.A. Dodgson & A. Chalmers / Designing a computer graphics course for first year undergraduates

in extremis, the student could hand this in. By the end of Week 2,
the student should have a reasonable submission that would get a
decent mark. Week 3 should be spent polishing the submission to
produce something that would score an excellent mark. Of course,
we actually expected most students to find that it takes longer than
they plan to get things working, so many students needed the third
week to give time to fix things that went wrong. We did not moni-
tor whether they produced their deliverables in the timeframe they
suggested; we simply assessed the final product.

Most students enjoyed this assignment, enjoyed the freedom to
create something of their own, and produced good results. Stu-
dents were asked to submit a one-page reflection on their experi-
ence. These were fascinating documents. A frequent comment was
that the work had taken longer than expected and that the time-
consuming parts of the project were not where they had expected
them to be. For example, one student chose to make all of her as-
sets (loadable image files) using Adobe Illustrator and discovered
that this took her as much time as all of the programming com-
bined. These lessons about time management are good to learn
early in your university career. The team of tutors were impressed
by the quality and range of outputs, with almost all students scor-
ing over 70%. A video of some of the best is available on Vimeo:
https://vimeo.com/196225486

7. Tutors’ experiences

Students were assigned to attend one tutorial session per week in
which they could interact with the tutors, though they could attend
other sessions if there were spaces available. We had ten sessions
in each week, with students being able to self-allocate to their pre-
ferred session using an online system. Tutorials were all held in the
same computer room. We selected a small computer room with 20
workstations to provide an intimate teaching space. We initially re-
stricted each tutorial to 16 students to provide workstations for up
to four tutors, though we had to relax this restriction when late reg-
istrations took our numbers close to, and then above, 160 students.

In each session, there were at least two tutors. In odd weeks,
the two tutors were available to help with the work sheet and the
assignment. In even weeks, tutors marked students’ work in one-
on-one sessions allowing direct feedback and also allowing them
to check that the student understood their submission. Because the
one-on-one sessions required more time, there were four tutors in
even weeks, to handle up to 20 students. Each one-on-one discus-
sion was up to 10 minutes long. Tutors found that it was beneficial
for the student to go through the assignment and explain what they
had done. For time efficiency, tutors would direct the conversation
to key points of interest, such as important concepts or objectives of
the assignment, rather than discussing particular bugs in their code.

The tutors were briefed by the course coordinator each week.
This involved a group discussion between the course coordinator
and the tutors on the key objectives of the assignments, allowing
immediate feedback from the tutors to the coordinator on how the
students were feeling from the previous assignment, and also al-
lowing for modifications to the upcoming assignment, such as diffi-
culty scaling. In even weeks the briefing session involved all tutors
marking the same small number of student assignments, to allow

debugging of the marking scheme and to ensure that tutors were
applying the same criteria in marking. Students were rotated round
the marking tutors in their laboratory so that they saw a different
marker for most assignments. This ameliorated any bias caused by
a particular marker being ‘tougher’ or ‘easier’ on students.

Tutors received assignments one week beforehand to allow them
to attempt the assignment themselves. The tutors would share in-
formation of what they had learnt with the other tutors. This gave
them useful insight into the common difficulties that could arise
from the students.

The odd-week sessions, in which the students attempted work-
sheets, proved useful. The work sheets were designed to be rela-
tively straightforward and walked the student through some of the
key concepts of the assignment. It was particularly useful in getting
the student to think about the problem at hand before attempting
the solve the problem themselves. The tutors’ experience was that
some of those who skipped the worksheet had more trouble com-
pleting the core of the assignment and tended to ask preliminary
questions of the assignment, whereas students who completed the
worksheet tended to get onto the completion sooner and would have
questions about the advanced key objectives of the assignment.

The even-week one-on-one marking sessions allowed students
to explain how they went about solving the problems in the assign-
ment and where they had issues. This allowed the tutors to under-
stand where most students had the most difficulty. This information
proved useful for the following odd-week’s session, allowing the
tutor to go around the class and provoke conversations on topics
that the students seemed to have the most trouble with. This ranged
from programming questions, such as describing object-oriented
programming and class structures, to mathematical questions, such
as the use of a dot product.

8. Lessons learnt

We found that students were, largely, competent at programming in
Processing, with almost all students submitting passing attempts at
all five assignments. The capstone projects demonstrated that the
majority of students had a good grasp of programming and rea-
sonable design ability. The initial worries that students would get
confused between Java and Processing were unfounded.

With regard to the algebra that we taught, we discovered that
Shirley and Marschner [SM09, Ch.6] move quickly from simple
matrix algebra, accessible to our students, to eigenvalue decompo-
sition, which was well beyond what we thought sensible to teach at
this level. We therefore needed to be careful in directing students to
which sub-sections of the textbook were necessary for the course
and which they could safely leave until the second-year course.

Despite our attempts to teach the appropriate mathematics, there
was still a large number of students that floundered in areas that
a computer graphics professional finds trivial. The final exam re-
vealed that many students had failed to grasp straightforward ma-
trix representations of transforms. In particular, students found 3D
transforms challenging. We may decide to limit the course to 2D
mathematics in future years. Indeed, during the development of the
course, we had decided to cut back the programming assignments

(© 2017 The Author(s)
Eurographics Proceedings (© 2017 The Eurographics Association.

https://vimeo.com/196225486

N.A. Dodgson & A. Chalmers / Designing a computer graphics course for first year undergraduates 15

to handle only 2D computer graphics as we felt that introducing 3D
for one or two assignments would be pushing the students too far.
We preferred to build towards an excellent capstone project in 2D
rather than a weak one in 3D. We subsequently found support for
this idea in Erik Paquette’s proposal for a 2D computer graphics
and image processing course [Paq05], whose syllabus is similar to
our own.

In order to give students a better chance with the mathematics,
we need more formal support. We offered help sessions in mathe-
matics but take up was very low, perhaps because students did not
link the mathematics to the programming required, especially in
assignments 2 (simple animation) and 4 (line-line intersection). In
retrospect we need to have the mathematics tied more closely into
the formal work sheets and assessments. Some mathematical con-
cepts could have been better understood through programming a
Processing sketch. However, few students were practising this tech-
nique. We need to highlight the idea of attempting sketches on their
own, outside of the worksheet and assignments. We can encourage
this in future years by providing students with appropriate support-
ing exercises to use in their own time,

Assignment 3 was the weakest of the five. It failed in its aim to
give students insight into transforms. We are considering replacing
it and perhaps combining something more rigorous on transforms
in Processing with some assessed mathematical problems.

Some students reported a mismatch between the content being
taught in lectures and what they were attempting in the assignment
at the time. The theoretical content, such as 3D transformations,
were considered by the students to be not useful, particularly when
the students specifically desired mathematical content which was
applicable to their current assignment instead.

During revision, before the final exam, students complained that
there were too many algorithms to learn. We think that this in-
dicates that many students were depending on memorising algo-
rithms to regurgitate in an exam rather than understanding the un-
derlying details. We will re-assess whether we are teaching too
many different algorithms but we think a better solution is to work
harder on showing how the different algorithms are linked so that
students can construct the outline of any algorithm without having
memorised the fine detail.

9. Summary

Overall, we produced a course that provides a good foundation for
our second year material and we were impressed by the students’
ability to program a simple game. However, we need to revisit
whether a technical computer graphics course can be truly accessi-
ble to students who have not taken a university-level algebra course,
and whether we therefore need to insist on an algebra pre-requisite
at the expense of making the course less accessible to students from
outside the Faculties of Science and Engineering.

Acknowledgements

Thanks to the anonymous reviewers for their clearly articulated
recommendations that significantly improved the paper. Thanks to
rest of the course team for their dedication and hard work: Dr

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.

Zohar Levi, Kieran Carnegie, Cullum Deighton, Connor Moody,
Richard Roberts, Joshua Scott, Ryan Sumner, and Anneka Wije-
tunge.

References

[FVDFH90] James D. Foley, Andries van Dam, Steven K. Feiner, and
John F. Hughes. Computer Graphics: Principles and Practice. Addison-
Wesley, second edition, 1990. 3, 5

[Guol4] Philip Guo. Python is now the most popular introductory teach-
ing language at top U.S. universities. BLOG@CACM, 2014. http:
//cacm.acm.org/blogs/blog-cacm/176450. 2

[Jen04] Tony Jenkins. The first language: A case for python? ITALICS:
Innovation in Teaching and Learning in Information and Computer Sci-
ences, 3(2):1-9, 2004. 2

[LH11] Ian Livingstone and Alex Hope. Next Gen: Transforming the UK
into the world’s leading talent hub for the video games and visual effects
industries. Technical report, NESTA, 2011. http://www.nesta.org.
uk/publications/next-gen. 1

[Ohl86] Mark R. Ohlson. The role and position of graphics in computer
science education. In ACM SIGCSE Bulletin, volume 18, pages 232-237,
1986. 1

[Paq05] Eric Paquette. Computer graphics education in different cur-
ricula: analysis and proposal for courses. Computers & Graphics,
29(2):245-255, 2005. 3,7

[RF14] Casey Reas and Ben Fry. Processing: A programming handbook
for visual designers and artists. MIT Press, second edition, 2014. 2, 3, 4

[RF15] Casey Reas and Ben Fry. Getting Started with Processing. Maker
Media, second edition, 2015. 2, 3, 4

[SBG10] Dino Schweitzer, Jeff Boleng, and Paul Graham. Teaching in-
troductory computer graphics with the Processing language. Journal of
Computing Sciences in Colleges, 26(2):73-79, 2010. 2

[SH74] Ivan E. Sutherland and Gary W. Hodgman. Reentrant polygon
clipping. Commun. ACM, 17(1):32-42, January 1974. 5

[Shel5] Amit Shesh. Teaching graphics to students struggling in math:
An experience. In Eurographics (Education Papers), pages 23-29, 2015.
3

[SMO09] Peter Shirley and Steve Marschner. Fundamentals of Computer
Graphics. CRC Press, third edition, 2009. 3, 6

http://cacm.acm.org/blogs/blog-cacm/176450
http://cacm.acm.org/blogs/blog-cacm/176450
http://www.nesta.org.uk/publications/next-gen
http://www.nesta.org.uk/publications/next-gen

