
EUROGRAPHICS 2012 / C. Andujar, E. Puppo Short Paper

GPU based ARAP Deformation using Volumetric Lattices

Michael Zollhöfer†, Ezgi Sert, Günther Greiner and Jochen Süßmuth

Computer Graphics Group, University Erlangen-Nuremberg, Germany

Abstract
We present a novel lattice based direct manipulation paradigm (LARAP) for mesh editing that decouples the
runtime complexity from the mesh’s geometric complexity. Since our non-linear optimization is based on the ARAP
paradigm, it is very fast and can be easily implemented. Our proxy geometry automatically introduces volume-
awareness into the optimization problem, leading to more natural deformations. Since we compute how the space
surrounding an object has to be deformed to satisfy a set of user-constraints, we can even handle models with
disconnected parts. We analyze the bottlenecks of the presented approach and propose a data-parallel multi-
resolution implementation on the GPU, which allows to pose even high-quality meshes consisting of millions of
triangles in real-time.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—geometric algorithms, languages, and systems

1. Introduction

Computer generated characters are ubiquitous in our modern
digital society. In movies and computer games they manage
to fascinate us with their unique charm. The purpose of com-
puter animation is to breathe life into these virtual beings.
This requires creating all the different poses the individual
characters have to adopt to tell a story. Artists usually need a
lot of knowledge about the underlying deformation models
to accomplish this labor-intensive task. To make the artist’s
life easier, current research focuses on interactive and intu-
itive modeling paradigms. Those give the artists the possibil-
ity to directly manipulate high-resolution characters using a
small number of vertex constraints. Unconstrained parts of
the characters should automatically follow the user’s input
in real-time. A natural and physically plausible look of the
deformations is of major importance for the authenticity of
the generated animations. This means, that the deformations
should be globally consistent and local details of the charac-
ters (e.g., the raptor’s eye in Figure 1) should be preserved.

1.1. Previous Work

Free-Form Deformation [SP86] allows to model space de-
formations by manually moving control points of a lattice.

† michael.zollhoefer@cs.fau.de

Although this scheme is conceptually simple, it is quite hard
to model a specific deformation of an embedded object.

In [IMH05], the authors present a handle based approach
to deform two-dimensional shapes in a distortion mini-
mizing way. As-rigid-as-possible surface modeling (ARAP)
[SA07] minimizes a surface based deformation energy to ob-
tain detail preserving mesh edits. Because the optimization
is formulated on the mesh’s geometry, interactive modeling

Figure 1: The proposed LARAP algorithm allows deforming
a raptor model with 1.7 million polygons in real-time.

c© The Eurographics Association 2012.

DOI: 10.2312/conf/EG2012/short/085-088

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/conf/EG2012/short/085-088


M. Zollhöfer, E. Sert, G. Greiner and J. Süßmuth / LARAP Mesh Deformation

Figure 2: Grid generation on a uniform 6x10 voxel grid.

is impossible for complex meshes. The idea of the graph
based deformation scheme by Sumner et al. [SSP07] is to de-
couple the optimization from the mesh’s complexity. Primo
[BPGK06] and its extension [BPWG07] are based on a de-
composition of the object in rigid volumetric cells. As regu-
larizer, the cells are connected by elastic forces. In [ZHS∗05]
a quadratic optimization problem is solved on a graph given
extrapolated local transformations. In contrast, we use the
non-linear ARAP energy which optimizes for local rotations
and employ a multi-resolution GPU solver.

Most similar to our work is Hybrid Mesh Editing
[BHZN10], which applies the as-rigid-as possible paradigm
to an automatically generated control cage and uses mean
value coordinates as transfer function. In comparison to their
approach, ours is volume-aware and allows for direct ma-
nipulation. Since we deform the surrounding space, we can
easily handle models with disconnected parts (e.g., the girl
and the trees in Figure 5). In addition, we propose a data-
parallel multi-resolution implementation which allows us to
pose even meshes with millions of triangles in real-time.

1.2. Contribution

The proposed LARAP deformation paradigm allows artists
to pose high-quality characters in an interactive and intuitive
manner. We combine the well-known ARAP approach with
automatically generated control lattices to decouple the al-
gorithm’s complexity from the complexity of the characters.
The regular structure of the lattice allows us to define an effi-
cient multi-resolution approach for solving the optimization
problem. To exploit the inherent parallelism, we present a
highly data-parallel implementation on the GPU.

2. Algorithm

2.1. Proxy Geometry Generation

A key requirement for interactive mesh manipulation is
real-time performance. To achieve this for highly-detailed
meshes, we have to decouple the runtime complexity of the
optimization problem from the mesh’s complexity. This can
be done efficiently by computing the optimal deformation
on a proxy geometry and transferring it to the original mesh.
While in theory arbitrary proxy geometries like cages, skele-
tons or scaffolds may be used, we decided to use a uniform
lattice as it will allow us to quickly solve the non-linear
optimization problem in a straight-forward multi-resolution
way. Further on, a uniform lattice allows us to simulate solid

Figure 3: The volume-awareness of LARAP (right) prevents
the surface collapsing artifacts typical for ARAP (left).

objects, yielding volume-aware deformations. As shown in
Figure 2, we place a uniform lattice around the input mesh
and then delete all cubes that lie entirely outside the input
geometry, yielding a volumetric proxy structure.

Next we need to link the mesh to the proxy geometry. A
straightforward approach to link the mesh’s vertices to the
control lattice would be to express each vertex as tri-linear
interpolation of the cube’s corners that contains it. However,
since this could result in artifacts, we will propose a more
thorough scheme for binding the vertices to the control lat-
tice in Section 2.3. For now, let us assume that we can ex-
press each mesh vertex v j as a linear combination of appro-
priate control points ci of the lattice, i.e., v j = ∑i αi, jci.

2.2. Modeling

In an interactive modeling session, the user first selects sev-
eral vertices of the input geometry that will further serve as
handles. If the handles are moved, the associated mesh ver-
tices should move as well and the unconstrained parts of the
input mesh should deform in a physically intuitive way. To
obtain such a deformation, we use the as-rigid-as-possible
surface modeling (ARAP) paradigm proposed by Sorkine
and Alexa [SA07], which is based on the observation that
if an object locally preserves its shape as good as possible
everywhere, the object’s global deformation will be smooth
and plausible. Given an arbitrary graph G consisting of nodes
ci and edges ei j in a rest pose and a deformed instance of
this graph G′ whose geometric embedding is defined by the
nodes c′i , the ARAP energy at a node ci is defined as the por-
tion of the transformation between the local neighborhood
of ci and c′i that cannot be represented by a rigid transfor-
mation. By defining the local neighborhood as the one-ring
Ni of the node ci and by summing over the local per-node
ARAP errors, we obtain an energy function E(G,G′) that
measures the plausibility of the deformation from G to G′:

E(G,G′) = ∑
i

∑
j∈Ni

∥∥(c′i− c′j)−Ri(ci− c j)
∥∥2

, (1)

where the Ri are the rotation matrices that minimize the local
deformation energies [SA07]. During interactive modeling,
we seek to find the positions c′i of the control lattice nodes
such that the energy in Equation (1) is minimized – as this

c© The Eurographics Association 2012.



M. Zollhöfer, E. Sert, G. Greiner and J. Süßmuth / LARAP Mesh Deformation

will result in a natural deformation – under the constraints
that the control lattice transforms all handle vertices v j ∈
HV to the positions t j defined by the user. Since we can
express each vertex as a linear combination of lattice points,
this can be stated as follows:

∑
i

αi, jc′i = t j ∀v j ∈HV. (2)

Since we may have more constraints than unknown lattice
points c′i , the above problem may be over determined. To be
able to solve the problem in general, we relax the problem
and solve for the constraints in a least squares sense as well:

Elarap(G,G
′) = γE(G,G′)+ ∑

v j∈HV

∥∥∥∥∥∑i
αi, jc′i− t j

∥∥∥∥∥
2

, (3)

where γ balances the influence of the regularization and the
constraint term (we use γ = 0.1 for all our examples). Solv-
ing Equation (3) for the unknown lattice points c′ = {c′i} re-
quires solving a non-linear optimization problem in the un-
knowns {Ri} and {c′i}. Fortunately, similar to [SA07], the
solution can be found using an iterative flip-flop optimiza-
tion, where in one step the grid points are kept fixed and the
energy term is minimized for the unknown rotations {Ri}
using SVD (see [SA07] for details). Then we solve for the
grid points {c′i} that minimize the energy in Equation (1) for
fixed {Ri}. Since Elarap is quadratic in the {c′i}, the optimal
grid points can be found by solving the linear system

(γL+BT B) · c′ = γb+BT t,

where L is the uniform Laplacian of the lattice, B is a ma-
trix containing the constraints from Equation (2) as rows, t is
the vector containing the handle positions and b is a vector
whose ith row is ∑ j∈Ni

Ri+R j
2 (ci−c j). Since the weights are

local, the matrix B is sparse. Thus the system can be solved
efficiently using a sparse solver for semi-definite systems.
By iteratively solving for the {Ri} and then for the {c′i}, in-
teractive modeling is usually possible with 3-8 of these steps.

2.3. Preliminary Results

When comparing our method to the original ARAP algo-
rithm, one apparent advantage of our approach is that we
decouple the complexity of the deformation from the tessel-
lation of the input geometry, which allows us to deform high
quality production meshes in real time. Furthermore, since
ARAP only aims at preserving the surface, unnatural folds
may occur when bending the surface (Figure 3). We can eas-
ily prevent such artifacts by using a solid cube lattice.

Using simple tri-linear weights (i.e., encoding each vertex
with respect to the surrounding lattice cell) for transferring
the deformation from the control lattice onto the input ge-
ometry results in a piecewise linear deformation field which
is only C0 continuous across cells as can be seen in Figure 4.
While this is usually sufficient for real-time editing, gener-
ating the final high quality poses requires a more elaborate

Figure 4: Comparison between tri-linear (middle) and B-
Spline (right) interpolation.

weighting scheme. Therefore, we propose to use quadratic
B-Spline weights when exporting the manipulated models,
as this results in a C1 continuous deformation field. Each
vertex is then encoded with respect to the 27 grid points of
the surrounding cells. Note that using B-Spline weights re-
quires all cubes that contain a vertex to have a complete set
of neighboring cubes. This can be guaranteed by dilating the
set of marked voxels during cage generation.

3. GPU based Implementation

The decoupling of the optimization problem from the mesh’s
complexity already results in an enormous speed-up. How-
ever, a closer analysis of the proposed algorithms reveals that
many parts of the presented algorithms can be computed en-
tirely in parallel – namely the computation of the SVDs and
right-hand sides for each lattice point and the interpolation
for each model vertex. We utilized this observation and im-
plemented the entire algorithm on the GPU using CUDA.
In each flip-flop iteration, we first compute the optimal rota-
tions for each control point’s one-neighborhood in parallel.
Then we update the right-hand side using the newly com-
puted rotations. In the last step of the flip-flop iteration, we
compute new positions for the lattice’s control points using
our parallel linear solver on the GPU. Because of the sequen-
tial dependence of these three steps, we have to synchronize
between the corresponding kernel calls. We solve the linear
system using either a parallel Gauss-Seidel like solver or a
parallel gradient descent. New improved positions of neigh-
bouring control points are used as soon as they are available.
This depends on the scheduling of the threads on the GPU.
After a user-defined number of flip-flop iterations has been
performed, we use an interpolation kernel to transfer the de-
formation of the lattice onto the input geometry.

The performance of the non-linear LARAP optimization
can be improved even more by solving the problem in a
multi-resolution manner. Starting from the finest control lat-
tice, we create a hierarchy of lattices by always joining 8
adjacent cubes. Each lattice is then encoded w.r.t. the next
coarser cage. We first solve for the deformation of the coars-
est cage, transfer it onto the next finer cage and use the re-
sulting positions as the starting point for another LARAP
optimization, and so on. All these operations are performed

c© The Eurographics Association 2012.



M. Zollhöfer, E. Sert, G. Greiner and J. Süßmuth / LARAP Mesh Deformation

PROPERTIES CPU GPU

Model Polygons Control Points SVD/RHS Solve Interpolation ∑ SVD/RHS Solve Interpolation ∑

Raptor 17k 10k 9.2 13.4 0.6 71.2 1.2 11.7 0.6 44
Raptor 170k 10k 9.4 12.6 6.6 75.6 1.2 11.4 0.8 44
Raptor 1.7M 10k 9.4 13.3 68 142 1.2 11.2 1.7 45
Dragon 2M 5k 6.1 7.7 79 122 0.9 7.3 1.7 31
Dragon 2M 20k 28 43 85 303 1.5 30.0 2.0 103
Dragon 2M 40k 53 85 84 504 2.0 68.6 2.4 222

Table 1: Timings: Comparison of the CPU and GPU implementation of our deformation paradigm (in ms).

in a data-parallel manner on the GPU, we can even map the
deformed model directly to the rendering pipeline.

4. Results

We tested our algorithm on the different (multi-part, polygon
soup, high detail) models shown in Figures 1 and 5. A sum-
mary of computation times on the CPU and the GPU is given
in Table (1). All timings were measured on a Core i7 860
CPU (using 8 threads) with an NVidia GeForce 580 GPU.
Note that the timings refer only to solving on the finest hi-
erarchy level. ∑ denotes the total time for solving the non-
linear optimization (3 flip-flop steps with 800 Gauß-Seidel
like iterations each, data transfer and interpolation).

Real-time edits using the proposed multi-resolution solver
can be found in the accompanying video. When using the
multi-resolution solver, we use 3 flip-flop iterations with 200
Gauß-Seidel like iterations on each hierarchy level. Multi-
resolution solving takes in total 71ms for the 2M faces
Dragon model using a cage with 40k cubes in the finest lat-
tice, which is another 300% speedup.

5. Conclusion

We introduced LARAP, a novel paradigm for interactive and
intuitive mesh editing. Using a simple lattice as proxy geom-
etry decouples the algorithmic complexity from the mesh’s
geometric complexity. Since the algorithm is based on the
simple ARAP optimization loop, it is also easy to imple-
ment. In combination with the proposed data-parallel multi-
resolution implementation of the non-linear solver, we can
interactively deform even high-quality meshes.

In the future, we plan to construct the lattice hierarchy in a
topology preserving way (i.e., avoid that cubes that were not
connected at a finer level are merged) as this will decouple
the parts of the model that have a small Euclidean but large
geodesic distance in coarse resolution lattices. Additionally,
by using an octree and monitoring the deformation error, we
plan to locally solve the optimization problem only up the
resolution on which the deformation error vanishes.

Acknowledgements

We thank the anonymous reviewers for their helpful and in-
sightful feedback. This work was partly funded by the Ger-
man Research Foundation (DFG) under grant STA-662/3–1.

Figure 5: Poses generated using our interactive mesh defor-
mation tool. The girl and the tree models contain multiple
unconnected components.

References
[BHZN10] BOROSÁN P., HOWARD R., ZHANG S., NEALEN A.:

Hybrid Mesh Editing. In EG Short Papers (2010), pp. 41–44. 2

[BPGK06] BOTSCH M., PAULY M., GROSS M., KOBBELT L.:
PriMo: Coupled Prisms for Intuitive Surface Modeling. In Pro-
ceedings of SGP’07 (2006), pp. 11–20. 2

[BPWG07] BOTSCH M., PAULY M., WICKE M., GROSS M.:
Adaptive space deformations based on rigid cells. Computer
Graphics Forum (Proc. EG ’07) 26, 3 (2007), 339–345. 2

[IMH05] IGARASHI T., MOSCOVICH T., HUGHES J. F.: As-
rigid-as-possible shape manipulation. ACM Trans. Graph. 24
(2005), 1134–1141. 1

[SA07] SORKINE O., ALEXA M.: As-Rigid-As-Possible Surface
Modeling. In Proc. of SGP’07 (2007), pp. 109–116. 1, 2, 3

[SP86] SEDERBERG T., PARRY S.: Free-form deformation of
solid geometric models. SIGGRAPH Comput. Graph. 20 (Au-
gust 1986), 151–160. 1

[SSP07] SUMNER R., SCHMID J., PAULY M.: Embedded defor-
mation for shape manipulation. ACM Trans. Graph. 26, 3 (2007),
Article 80. 2

[ZHS∗05] ZHOU K., HUANG J., SNYDER J., LIU X., BAO H.,
GUO B., SHUM H.-Y.: Large mesh deformation using the vol-
umetric graph laplacian. ACM Trans. Graph. 24 (July 2005),
496–503. 2

c© The Eurographics Association 2012.


