
Revision Control Framework for 3D Assets

Jozef Doboš and Anthony Steed
j.dobos@cs.ucl.ac.uk

*.3D

MongoDB

Binary

JSON

3D RCViewer

3D Diff

(a) System Overview (b) 3D RCViewer

3D Editors

(Max, Maya, Blender...)

Figure 1: In (a), 3D files from various modelling packages are uploaded into our viewer which stores scenes in a NoSQL database. (b) 3-way 3D diff supports selective merging

from two different revisions (top) when combining into the common origin (bottom). Conflicts are highlighted in red, modifications in blue and current selection in orange.

Introduction

Previously for images, Chen et al. [CWC11] proposed an integrated revision con-

trol by logging actions in a graphical editor. We believe that, initially, our frame-

work should not rely on any specific modeling tool but rather deal with 3D files

external to the editor.

•Non-linear revision control system is built using a NoSQL database (MongoDB).

• Scene graph nodes as well as their hierarchy are stored.

•Our DB front-end offers conflict resolution that facilitates 2- and 3-way diff for

meshes, see Figure 1b.

3D Database

Zeleznik et al. [ZHC∗00] used scene graph as a data format to inter-mediate be-

tween different applications. Similarly, we convert 3D files into scene graph com-

ponents using the Open Asset Import Library (Assimp). These are subsequently

encoded as Binary JSON (BSON) objects for storage and revision tracking in Mon-

goDB, see Figure 1a.

• Scene graph is described as a directed acyclic graph (DAG).

•Non-linear history that allows for branching and merging is a DAG, too.

•To identify scene graph nodes, we assign each a universally unique identifier

(UUID) and a revision number.

3D Diff

As shown in Table 1, discrepancies (⊕,⊗) in any two nodes (2-way) cannot be

resolved automatically. Our novel 3D diff tool allows the user to selectively choose

one or the other revision for each conflicting scene graph node.

•We perform an early reject byte-by-byte memory comparison on BSON objects

that share the same UUID.

•Adding extra information about a common origin based on the same UUIDs

(3-way) can further aid automated conflict resolution, see Table 1.

Discussion

It remains an open research question as to how to improve the user interaction in

3D diff. Possible avenues include automated camera navigation for better context

understanding, bounding box conflict detection and vertex-level merging.

•The smallest revision unit is a BSON document.

• If a single vertex is changed, the whole mesh would need to be resaved.

•Modelling software might not preserve UUID and revision numbers.

��

����

���	
��

���	
�


������

�����

����


������

���������������

������

����

����������

������������������

������

����

������

����

������������������

��������������������

������

�����

Figure 2: Diagram of non-conflicting edits resolved by automatic merge. Because

modifications to the roof (green) are independent of its position (purple) within

the scene, User2 can commit using the implicit auto merge functionality.

Origin Head Local Result

conflict

Head Local Result

conflict

Table 1: Schematic representation of a 2-way (left) vs. a 3-way (right) diff with

suggested merge results. Each scene graph node can be modified in head or

local/branch revisions.

References

[CWC11] CHEN H.-T., WEI L.-Y., CHANG C.-F.: Nonlinear revision control for

images. In ACM SIGGRAPH 2011 papers (2011), pp. 105:1–105:10.

[ZHC∗00] ZELEZNIK B., HOLDEN L., CAPPS M., ABRAMS H., MILLER T.:

Scene-graph-as-bus: Collaboration between heterogeneous stand-alone

3-d graphical applications. In Eurographics (2000).

���
�������	���

��
�	�
�

��������	
����

�
��
�
���
����������������
 �����������	
��


��� �����������


