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Abstract
This study introduces the Misclassification Likelihood Matrix (MLM) as a novel tool for quantifying the reliability of neural
network predictions under distribution shifts. The MLM is obtained by leveraging softmax outputs and clustering techniques to
measure the distances between the predictions of a trained neural network and class centroids. By analyzing these distances, the
MLM provides a comprehensive view of the model’s misclassification tendencies, enabling decision-makers to identify the most
common and critical sources of errors. The MLM allows for the prioritization of model improvements and the establishment of
decision thresholds based on acceptable risk levels. The approach is evaluated on the MNIST dataset using a Convolutional
Neural Network (CNN) and a perturbed version of the dataset to simulate distribution shifts. The results demonstrate the
effectiveness of the MLM in assessing the reliability of predictions and highlight its potential in enhancing the interpretability
and risk mitigation capabilities of neural networks. The implications of this work extend beyond image classification, with
ongoing applications in autonomous systems, such as self-driving cars, to improve the safety and reliability of decision-making
in complex, real-world environments.

CCS Concepts
• Computing methodologies → Machine learning; Computer vision;

1. Introduction

In a multiclass classification setting, the severity and consequences
of misclassifications can vary significantly depending on the spe-
cific problem domain and the nature of the classes involved. Some
misclassifications may lead to more serious repercussions than oth-
ers, making it crucial to consider the relative importance of differ-
ent types of errors.

For example, in medical diagnosis, misclassifying a malignant
tumor as benign can have life-threatening consequences, as it may
delay necessary treatment. On the other hand, misclassifying a be-
nign tumor as malignant may lead to unnecessary interventions and
patient anxiety, but the consequences are generally less severe com-
pared to a false negative. In this context, false negatives are consid-
ered more hazardous than false positives.

Similarly, in autonomous driving systems, misclassifying a
pedestrian as a non-pedestrian object can result in a collision and
potential loss of life, while misclassifying a non-pedestrian object
as a pedestrian may cause the vehicle to unnecessarily brake or take
evasive action, which is less dangerous.

Additionally, financial systems, where errors might result in sig-
nificant economic losses; or legal applications, where misjudg-
ments could affect individuals’ lives.

Researchers have studied and addressed the varying hazards of

misclassifications in different domains. [KW06] explore the re-
lationship between diversity measures and ensemble accuracy in
classifier ensembles. They discuss the importance of considering
the costs of different types of errors and how they can be incorpo-
rated into the design and evaluation of classifier ensembles. [MS20]
propose a framework for consistent cost-sensitive learning with
nonlinear loss functions. They address the issue of varying misclas-
sification costs and present algorithms that can effectively handle
such scenarios, enabling the learning of classifiers that are sensi-
tive to the relative hazards of different types of errors.

Approaches such as Multi-class Difference in Confidence and
Accuracy (MDCA) [HPMA22], aim to align CNN-like models’
predicted confidence scores with their actual accuracy across all
classes, not just the predicted class (DCA).

Ensuring the reliability of automated decision-making systems
is crucial in high-stakes domains where errors can lead to severe
consequences [AOS*16]. Machine learning models, despite their
impressive performance, are susceptible to making inaccurate pre-
dictions when presented with data that deviates from the train-
ing distribution, a problem known as distribution shift [HBM*21;
QSSL09].

Distribution shift is a critical challenge in machine learning that
occurs when the statistical properties of the data used to train a
model differ from those encountered during deployment or testing
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[QSSL09; HD19]. This mismatch can lead to a significant decline
in model performance, as the model’s learned patterns may not gen-
eralize well to the new data distribution.

Distribution shift can manifest in various forms. Covariate shift
occurs when the distribution of input features changes between
training and deployment, while the relationship between features
and labels remains the same [Shi00]. Concept drift refers to situa-
tions where the relationship between input features and the target
variable changes over time, even if the input distribution remains
constant [GŽB*14]. Domain shift encompasses changes in both the
input distribution and the relationship between inputs and outputs,
often seen when applying a model to a new domain [PGLC15].
These different types of shifts present unique challenges and re-
quire tailored approaches to address them effectively.

To quantify and mitigate distribution shift, researchers have de-
veloped a range of sophisticated techniques. Statistical divergence
measures, such as Kullback-Leibler divergence [KL51] or Maxi-
mum Mean Discrepancy [GBR*12], help quantify the difference
between two probability distributions, allowing researchers to de-
tect and measure distribution shift. These measures provide valu-
able insights into the extent of the shift and can guide mitigation
strategies.

Domain adaptation techniques aim to adapt a model trained on
one domain (source) to perform well on a different but related do-
main (target) [WD18; SKM07; PY09; GUA*16]. These methods
include transfer learning, where knowledge gained from one task
is applied to a different but related task, adversarial training, which
aims to learn domain-invariant features, and importance weighting,
which adjusts the contribution of training samples based on their
relevance to the target domain.

Adaptive algorithms are designed to continuously update and
adapt to changing data distributions [LLD*18; BdCF*06]. These
approaches often involve online learning or incremental learning
techniques that can adjust model parameters as new data becomes
available. Such algorithms are particularly useful in dynamic envi-
ronments where the data distribution may evolve over time.

Quantifying the likelihood of misclassifications under distribu-
tion shift is crucial for assessing and mitigating risks in real-world
deployments. By estimating the probability of incorrect predic-
tions, decision-makers can make informed choices about when to
rely on automated systems and when to defer to human judgment.
This is particularly important in dynamic environments where the
data distribution may evolve over time, necessitating continuous
monitoring and adaptation of the models.

2. Context

2.1. Softmax Output And Environmental Aspects

The softmax output of a classifier represents the predicted proba-
bilities for each class. In an n-class classification problem, the soft-
max function takes the logits (raw outputs) of the classifier and
transforms them into a probability distribution over the n classes
[GBC16]. The softmax output is a vector of length n, where each
element represents the predicted probability of the input belonging
to the corresponding class. The probabilities in the softmax output

sum up to 1, indicating the relative confidence of the classifier in
each class prediction. The class with the highest probability is typi-
cally considered the predicted class. The softmax output provides a
more informative and interpretable representation of the classifier’s
predictions compared to the raw logits.

When making a final decision, it is common practice to select
only the class with the highest probability, effectively discarding
the remaining (n− 1)/n of the softmax output [Gal16]. This ap-
proach, while straightforward and widely used, raises concerns
about the inefficient use of the model’s output and its potential en-
vironmental implications.

By considering only the class prediction, we are essentially dis-
carding a significant portion of the information generated by the
model. In a scenario with a large number of classes, this can
lead to a substantial waste of computational resources and en-
ergy [SGM19]. The discarded softmax probabilities, which con-
tain valuable information about the model’s uncertainty and the re-
lationships between classes, are effectively consigned to a digital
landfill, contributing to the growing problem of electronic waste
and energy consumption in the field of machine learning [SDSE20].

The environmental impact of this practice becomes more pro-
nounced when considering the increasing scale and complexity of
modern machine learning models. As the number of classes grows
and models become more sophisticated, the amount of discarded
information also increases, leading to a larger digital carbon foot-
print [LLSD19]. This is particularly concerning given the rapid
growth of machine learning applications in various domains, from
image and speech recognition to natural language processing and
autonomous systems [TGLM20].

Certain approaches lend themselves well to make better use of
the entire softmax output. One such approach is to incorporate
uncertainty estimation techniques, such as Monte Carlo dropout
[GG16] or ensemble methods [LPB17], which leverage the full
probability distribution to quantify the model’s confidence in its
predictions. By considering the uncertainty information, systems
can make more informed decisions and avoid discarding potentially
useful information [KG17].

Another approach is to develop more efficient and
environmentally-friendly machine learning techniques, such
as model compression [HMD15], quantization [GKD*21], and
energy-aware training [GRRG21]. These methods aim to reduce
the computational and memory requirements of models while
maintaining their performance, thereby reducing the environmental
impact of machine learning systems.

Furthermore, there is a growing awareness of the need for sus-
tainable AI practices and the development of green AI frameworks
[SDSE20]. These initiatives focus on designing and implement-
ing machine learning systems that prioritize energy efficiency, re-
source conservation, and environmental sustainability. Sustainable
AI practices can help mitigate the environmental impact of dis-
carded softmax outputs and other inefficiencies in machine learning
pipelines.
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2.2. Using All Softmax Output Predictions

Utilizing the entire set of softmax prediction probabilities, instead
of solely depending on the maximum output, has been widely in-
vestigated to improve the safety, robustness, and trustworthiness
of machine learning models. By considering the complete distri-
bution of class predictions, more reliable and informative predic-
tion pipelines can be developed, enabling techniques such as un-
certainty quantification, anomaly detection, and robustness against
adversarial attacks [KG17; LPB17; HG17; GSS14; SZS*13].

The softmax probabilities provide valuable information for in-
terpretability and explainability of the model’s decisions, facilitat-
ing human-machine collaboration and trust [RSG16; DK17]. The
importance of leveraging the entire softmax distribution extends
to various safety-critical domains, such as autonomous vehicles,
medical diagnosis, and financial risk assessment, where the conse-
quences of incorrect predictions can be severe [MKG18; LAA*17].
By considering the full distribution of predictions, more informed
and reliable decisions can be made, reducing the risk of catas-
trophic failures.

The Misclassification Likelihood Matrix (MLMs) proposed in
this study we believe has potential to further enhance the inter-
pretability and risk mitigation capabilities of softmax probabilities.
MLMs provide a comprehensive view of the model’s misclassi-
fication tendencies by capturing the likelihood of each class be-
ing misclassified as another class. By analyzing the patterns and
magnitudes of these misclassification likelihoods, decision-makers
can identify the most common and critical sources of error. This
information can be used to prioritize model improvements, guide
data collection efforts, and establish decision thresholds based on
the acceptable level of risk. Moreover, MLMs can be employed
to generate explanations for the model’s predictions, highlighting
the classes that are most likely to be confused and the factors con-
tributing to the misclassifications. This transparency enables users
to better understand the limitations and potential failure modes of
the model, promoting informed decision-making and fostering trust
in the system.

3. Methods

3.1. Neural Networks

A Convolutional Neural Network (CNN) is used to classify hand-
written digits from the MNIST dataset, consisting of 60,000 train-
ing images and 10,000 testing images, each of size 28x28 grayscale
(single channel) pixels, representing digits from 0 to 9.

In our analysis, we consider the classifier neural network’s entire
output, not just the highest probability score. The network produces
a probability vector p = (p1, p2, . . . , pK), where ∑ pi = 1,

This probability distribution is derived from a logit vector z =
(z1,z2, . . . ,zK) through the application of the softmax function:

pi = softmax(zi) =
ezi

∑
K
j=1 ez j

(1)

For example, given

Figure 1: MNIST testing dataset confusion matrix where the least
misclassified digit is 0 (top row) and the most misclassified digit
is 8 (second row from bottom up), where the figures represent a
snapshot i.e. one single testing dataset, the main difference between
a traditional confusion matrix and the MLM which may represent
n distribution-shifted testing datasets.

p = [0.01,0.01,0.01,0.01,0.9,0.01,0.01,0.01,0.01,0.01], the
predicted class is ’4’, corresponding to the highest value at index
five, reflecting the confidence of the prediction for each class from
’0’ to ’9’.

The relationship between logits and probabilities can be ex-
pressed as:

zi = log
(

pi

1− pi

)
(2)

Here, zi represents the logit for class i, while pi denotes the prob-
ability that the input belongs to class i. These logits can be inter-
preted as log-likelihoods of class membership [GBC16; Bis06].

By examining the entire output vector, rather than just the highest
score, we gain deeper insights into the model’s decision-making
process and its level of certainty or uncertainty across all possible
classes.

The CNN architecture, implemented using PyTorch, consists of
two convolutional layers followed by two fully connected layers.
The first convolutional layer has 16 filters with a kernel size of 3x3
and a padding of 1. The second convolutional layer has 32 filters
with the same kernel size and padding. Each convolutional layer is
followed by a ReLU activation function and a max-pooling layer
with a pool size of 2x2. The output of the second convolutional
layer is flattened and passed through two fully connected layers
with 128 and 10 neurons, respectively. The final output is passed
through a log-softmax function to obtain the predicted class proba-
bilities. The total number of parameters for the CNN MNIST clas-
sifier is 206,922.
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The model was trained using the Stochastic Gradient Descent
(SGD) optimizer with a learning rate of 0.01, batch size of 64 and
Cross-Entropy loss function.

3.2. Perturbed MNIST Dataset

To test our trained model, we augment by two orders of magni-
tude the MNIST testing dataset, where the original testing dataset
consists of 10,000 images with 10 classes of approximately 1,000
examples each. We create 12 perturbations - Brightness, Contrast,
Defocus Blur, Fog, Frost, Gaussian Noise, Impulse Noise, Mo-
tion Blur, Pixelation, Shot Noise, Snow and Zoom Blur - follow-
ing prior work by [HD19], at 10 intensity levels, generating a
dataset of 1,210,000 images. We modify perturbation function pa-
rameters by trial and error such that increased perturbation levels
on the testing dataset cause network predictive accuracies to de-
crease linearly. The 60,000 image training dataset was left unper-
turbed. While it would be desirable to use more than one dataset,
it has been demonstrated that softmax output distances to cen-
troids (explained in the next section) are greater for misclassified
examples in both MNIST/CNN and CIFAR-10/ViT (Vision Trans-
former) [SGW*24]. CNNs have been the traditional go-to architec-
ture for image recognition tasks, leveraging local receptive fields
and spatial hierarchies. Vision Transformers, on the other hand,
represent a more recent paradigm shift in computer vision, adapt-
ing the self-attention mechanism from natural language processing
to image analysis. Despite these fundamental differences in archi-
tecture, both types of models exhibit similar behavior in terms of
the relationship between softmax output distances and misclassifi-
cation likelihood.

It is also important to note that the probability distribution of
a digit belonging to a class is not normally distributed, but rather
follows a multinomial distribution across the 10 digit classes.

3.3. Misclassification Likelihood Matrix

To generate a Misclassification Likelihood Matrix for a particular
model and dataset, we proceed as described next:

a. Obtaining the Centroids: Let D = (x1,y1),(x2,y2), ...,(xn,yn)
be the training dataset, where xi ∈ Rd represents the input features
and yi ∈ 0,1, ...,9 represents the corresponding digit class label. We
train a neural network classifier fθ(x) on this dataset, where θ rep-
resents the learned parameters of the model. To obtain the initial
class centroids, we first collect the softmax outputs of the trained
classifier for each correctly classified example in the training set.
Let Sc = s1,s2, ...,sm be the set of softmax outputs for examples
correctly classified as class c, where si ∈ R10. We calculate the ini-
tial centroid µc for class c as the mean of the softmax outputs:

µc =
1
m

m

∑
i=1

si (3)

We repeat this process for each digit class c ∈ 0,1, ...,9 to obtain
the initial centroids µ0,µ1, ...,µ9.

After obtaining the initial centroids, we use them to initialize

Figure 2: Perturbed MNIST testing dataset MLM, where dark blue
indicates greater, and lighter yellow lower likelihood of misclassifi-
cation. The figures effectively represent 120 MNIST testing datasets
with 10 levels of noise across 12 different perturbation types.

the K-Means algorithm. The K-Means algorithm iteratively assigns
each softmax output to the nearest centroid and updates the cen-
troids based on the assigned outputs until convergence. This pro-
cess refines the centroids and yields the final adjusted centroids
µ̂0, µ̂1, ..., µ̂9.

b. Obtaining the Distance to a Neighboring Centroid: Given a
test example x with true class label y, we obtain the softmax output
s = fθ(x), that we interpret as points in a simplex, which has a nat-
ural Euclidean geometry. To calculate the distance between s and a
neighboring class centroid µ̂c, where c ̸= y, we use the Euclidean
distance:

d(s, µ̂c) =

√√√√ 10

∑
i=1

(si − µ̂c, i)2 (4)

This distance measures how close the softmax output of the test
example is to the adjusted centroid of a different class.

c. Obtaining the Nearest Distances Between Digit Classes Ma-
trix: To construct the matrix of nearest distances between digit
classes, we iterate over all test examples and calculate the nearest
distance to each neighboring class centroid. Let Xy be the set of test
examples with true class label y. For each test example x ∈ Xy, we
calculate the distance d( fθ(x), µ̂c) to each neighboring class cen-
troid µ̂c, where c ̸= y. We then find the minimum distance among
all test examples in Xy to each neighboring class centroid:

Dy,c = minx ∈ Xyd( fθ(x), µ̂c) (5)

The resulting matrix D ∈R10×10 contains the nearest distances be-
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tween each pair of digit classes, where Dy,c represents the nearest
distance from class y to class c.

d. Obtaining the Misclassification Likelihood Matrix: To obtain
the misclassification likelihood matrix, we transform the nearest
distance matrix D by taking the reciprocal of each element and nor-
malizing the rows:

Ly,c =

1
Dy,c

9
∑

c=0

1
Dy,c

(6)

The resulting matrix L ∈ R10×10 contains the misclassification
likelihoods between each pair of digit classes, where Ly,c repre-
sents the likelihood of an example from class y being misclassified
as class c. Higher values indicate a higher likelihood of misclassi-
fication, while lower values indicate a lower likelihood.

3.4. Testing the hypothesis

To test the hypothesis that some misclassifications are more likely
to occur than others, we can analyze how the misclassification like-
lihoods change as we introduce perturbations to the input images.
By comparing the misclassification likelihoods at different pertur-
bation levels, we can determine if certain digit pairs are consistently
more prone to misclassification.

Let L(p) ∈ R10×10 be the misclassification likelihood matrix at
perturbation level p, where p ∈ {1,2, ...,10}. Each element L(p)

y,c
represents the likelihood of an example from class y being misclas-
sified as class c at perturbation level p.

To obtain L(p), we follow a similar process as described in Sec-
tion 3.3.d, but we use the distances calculated from the perturbed
examples at level p. Let X (p)

y be the set of test examples with true

class label y at perturbation level p. For each test example x ∈ X (p)
y ,

we calculate the distance d( fθ(x),µc) to each neighboring class
centroid µc, where c ̸= y.

We then find the minimum distance among all test examples in
X (p)

y to each neighboring class centroid:

D(p)
y,c = min

x∈X (p)
y

d( fθ(x),µc) (7)

The resulting matrix D(p) ∈ R10×10 contains the nearest dis-
tances between each pair of digit classes at perturbation level p.

To obtain the misclassification likelihood matrix L(p), we apply
the same transformation as in Section 3.3.d:

L(p)
y,c =

1
D(p)

y,c

9
∑

c=0

1
D(p)

y,c

(8)

We repeat this process for each perturbation level p to obtain a
set of misclassification likelihood matrices {L(1),L(2), ...,L(10)}.

To test the hypothesis, we can analyze the changes in misclas-
sification likelihoods across different perturbation levels. We can
calculate the average misclassification likelihood for each digit pair
(y,c) across all perturbation levels:

L̄y,c =
1

10

10

∑
p=1

L(p)
y,c (9)

We can then identify the digit pairs with the highest average
misclassification likelihoods. If these pairs consistently have high
misclassification likelihoods across different perturbation levels, it
suggests that they are more prone to misclassification compared to
other digit pairs.

To quantify the consistency of misclassification likelihoods
across perturbation levels, we can calculate the standard deviation
of the misclassification likelihoods for each digit pair:

σy,c =

√√√√ 1
10

10

∑
p=1

(L(p)
y,c − L̄y,c)2 (10)

A low standard deviation indicates that the misclassification like-
lihood for a digit pair remains relatively stable across perturbation
levels, supporting the hypothesis that certain misclassifications are
more likely to occur consistently.

4. Results and Discussion

4.1. Neural Network Training

The MNIST dataset was preprocessed using a transformation
pipeline that converted the images to PyTorch tensors and normal-
ized the pixel values to have a mean of 0.5 and a standard deviation
of 0.5. The dataset was then loaded using PyTorch’s DataLoader,
for batch processing and shuffling of the data. The CNN MNIST
classifier was trained for 10 epochs, and took 5m6s to train on a
Dell Precision Tower 5810 with a 6 core Intel Xeon Processor and
32GB memory running Ubuntu 18.04. The accuracy obtained on
the training dataset is 98.38% and 98.46% on the testing dataset.

The confusion matrix shown in Figure 1 is obtained from the
original testing dataset (10,000 images) i.e. without perturbations
and provides some insights into what could be the most likely
MNIST misclassifications. We note that number zero is the digit
least, and number eight is the digit most misclassified. Other digits
that have low misclassification counts are digits one and five. Digit
eight has higher misclassification counts for predicted labels zero,
six and nine. Digit three has relatively high misclassification counts
for predicted labels five and seven.

4.2. Clustering results

After running the K-Means clustering algorithm, initialised with
the average softmax outputs for each class, we obtain cluster cen-
troids. We are interested in knowing how much the average softmax
outputs moved from their initial position.

Table 1 presents the Euclidean distances between the average
softmax outputs and the K-Means centroids for each digit class (0-
9). For most digit classes (0, 1, 2, 3, 4, 7, 9), the Euclidean distances
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Table 1: Euclidean Distances between Class Average Softmax and
K-Means Centroids

Class Distance
0 1.1694e-14
1 1.0959e-14
2 6.7639e-15
3 1.7808e-14
4 7.7425e-15
5 1.3045e-04
6 2.3118e-04
7 1.3083e-14
8 1.4139e-04
9 1.2047e-14

are extremely small, on the order of 1e-14 to 1e-15, indicating that
the average softmax outputs are very close to the centroids obtained
from the K-Means clustering algorithm. However, for digit classes
5, 6, and 8, the Euclidean distances are slightly larger, on the order
of 1e-4, suggesting a minor difference between the average soft-
max outputs and the K-Means centroids for these specific classes,
which could be attributed to the presence of some misclassified or
ambiguous examples within these classes. Despite the slight devi-
ations observed for classes 5, 6, and 8, the overall distances be-
tween the average softmax outputs and the K-Means centroids are
relatively small across all digit classes, indicating a strong similar-
ity between the representations learned by the neural network and
the centroids obtained from the K-Means clustering algorithm. The
small distances suggest that using the average softmax outputs as
initial centroids for the K-Means clustering algorithm is an effec-
tive approach, as they provide a good starting point for the cluster-
ing process and can potentially lead to faster convergence. Given
the data is highly skewed towards the centroids, alternative statisti-
cal methods like standard percentiles lack granularity.

4.3. Misclustered Images

Figure 3: The Softmax output for the two "misclustered images in
the correctly classified MNIST training dataset. Both are labelled
as digit six. The example on the left is assigned to cluster 5 while
the example on the right is assigned to cluster 8

Looking at the pattern of the softmax output (network prediction)
indicates how confident a model is of the class prediction. Figure 3

contains two bar charts that show the MNIST-trained CNN softmax
output for MNIST dataset digit ids 8688 and 22561 (starting from
index 0), where both are labelled as class 6 and correctly classified
by the CNN as such. The bar chart on the left shows the softmax
output assigns a very high probability to both classes 5 and 6 (where
6 is the highest). The bar chart on the right shows that the CNN as-
signs a high probability to classes 6 and 8 (where 6 is again the
highest). The cluster labels however do not correspond as digit id
8688 is nearer to the cluster 5 centroid, and digit id 22561 is nearer
to cluster 8 centroid. This volatility may be explained by the rela-
tively high deltas shown in Table 1, where the K-Means centroids
moved a relatively large distance with respect to the initial values
(given by average softmax outputs for correct digit classifications
in the training dataset), for digit classes 5, 6 and 8.

Conversely, the pattern of the distance to class centroids for a
given softmax output indicates how close the softmax output is to a
class centroid with respect to other class centroids. Figure 4 shows
on the left the distance to all class centroids of digit id 8688 network
softmax output, placing it closing to centroids 5 and 6, while the
image on the right (digit id 22561) places the softmax output closer
to centroids 6 and 9. We notice the inverse relation between both
sets of figures, where the highest bars (network confidence) in the
first set correspond to the lowest bars (distance to class centroid)
set in the second set.

Figure 4: The Softmax prediction distance to centroids for MNIST
training images indexes 8688 (left) and 22561 (right), where both
images are digit class 6, and the left image is misclassified as digit
class 5, while the right image is misclassified as digit class 8.

4.4. Applying Perturbations

Through trial and error, we find sets of parameter values for each
perturbation function, such that as the level increases from 1 to 10,
the network predictive accuracy decreases from 98.52% maximum
to 36.32% minimum and from average 97.61% (level 1) to 48.83%
(level 10). The accuracy degradation can be observed both Figures
5 and 6.

Figure 6 shows digit class 5 subject to increasing levels of pix-
elation from left to right. The bottom row of the figure shows the
average softmax output for all perturbation types at a given level.
We note that at all levels from 1 to 10, the highest prediction is digit
class 5 (sixth column from left to right on every plot, the first being
for digit 0).
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Figure 5: Plot for network accuracy degradation for individ-
ual perturbation types: Brightness, Contrast, Defocus Blur, Fog,
Frost, Gaussian Noise, Impulse Noise, Motion Blur, Pixelation,
Shot Noise, Snow and Zoom Blur.

Figure 7 shows a heatmap where every cell represents one per-
turbation (y axis labels, 12 in total) at one intensity level (x axis
labels, 10 in total) applied to the 10,000 image MNIST training
dataset, the perturbed images are presented to the trained model
and the resulting accuracy is placed in the corresponding cell. The
heatmap therefore represents an experiment with 1,210,000 predic-
tions on perturbed images of the perturbed dataset as described in
section 3.2.

The heatmap uses a color scale from red to blue, with red indicat-
ing higher accuracy values and blue representing lower accuracy.
As the perturbation intensity increases, the accuracy decreases for
all perturbation types.

Some perturbations, such as brightness, contrast, and defocus
blur, have a more gradual impact on accuracy as the intensity in-
creases. For example, the accuracy under brightness perturbation
drops from 0.99 at intensity 1 to 0.50 at intensity 10. Other pertur-
bations, like pixelation and zoom blur, cause a more rapid decrease
in accuracy at higher intensities.

Interestingly, certain perturbations, such as snow and impulse
noise, show a slight increase in accuracy at lower intensities (e.g.,
intensity 2) compared to the baseline (intensity 1). This suggests
that a small amount of these perturbations might act as a form of
data augmentation, potentially improving the model’s robustness.

The model appears to be most resilient to perturbations like
brightness, contrast, and fog, maintaining relatively high accuracy
even at higher intensities. On the other hand, perturbations such as
pixelation, shot noise, and zoom blur have a more substantial neg-
ative impact on accuracy, with values dropping below 0.6 at higher
intensities.

4.5. Misclassification Likelihood Matrix

Figure 2 shows the Misclassification Likelihood Matrix obtained by
the method described in section 3.3. Comparing the figure with the
MNIST testing (non-perturbed) dataset shown in Figure 1 we can
notice some information added by the MLM that may help inform
risk assessment. On the top right of the confusion matrix is a clus-
ter of zeros, representing digits 0, 1 and 2 misclassifications of 8
and 9. The MLM is able to provide fine-grained information about
the misclassification likelihood, assigning relatively low albeit non-
zero likelihood misclassification values. As the MLM represents a
much larger dataset, there are some noticeable discrepancies. The
MLM does not assign a high likelihood for digit 9 misclassified as
7, which is the highest in the testing dataset. On the other hand,
row 7 is a close match with 7 being misclassified as 2 holding in
the perturbed MNIST dataset.

MLM and traditional confusion matrices offer complementary
insights into a neural network’s classification performance. The
MLM, derived from multiple perturbed versions of the testing set,
provides a fine-grained view of misclassification tendencies. It rep-
resents the likelihood of each digit class being misclassified as an-
other, with color intensity indicating misclassification probability.
In contrast, the confusion matrix shows actual counts of correct
and incorrect classifications for a single test set. The MLM offers
an additional perspective, showing likelihood values even for rare
misclassifications.

While the confusion matrix clearly shows classification perfor-
mance with higher numbers on the diagonal indicating better accu-
racy, the MLM requires a different interpretation. Zero values on
the diagonal mean one class cannot be misclassified as itself. Both
tools highlight patterns like the high likelihood of misclassifying
7 as 2, while the MLM also shows likelihood for corresponding
zero values in the confusion matrix e.g. the likelihood of class zero
being misclassified as classes 1, 2, 3, 4 or 5.

5. Conclusions and Future Work

In this study, we proposed a novel approach for quantifying the re-
liability of neural network predictions under distribution shifts by
leveraging clustering techniques and analyzing the distances be-
tween softmax outputs and class centroids.

The introduction of the Misclassification Likelihood Matrix
(MLM) provides a comprehensive view of the model’s misclassi-
fication tendencies, enabling decision-makers to identify the most
common and critical sources of errors. The results highlight the
potential of MLMs in enhancing the interpretability and risk miti-
gation capabilities of softmax probabilities.

The implications of our work extend beyond image classifica-
tion, with ongoing applications in autonomous systems, such as
self-driving cars, to improve the safety and reliability of decision-
making in complex, real-world dynamic environments. By iden-
tifying scenarios where human judgment is preferable to the au-
tonomous system’s assessment, our methodology aims to mitigate
the risks associated with distribution shifts and enhance the over-
all trustworthiness of automated decision-making systems. Future
directions:

© 2024 The Authors.
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Figure 6: Top row: MNIST class digit 5 subject 1 to 10 levels of pixelation going left to right. Bottom row: the average softmax output for the
perturbed MNIST dataset class digit 5 for each perturbation level across all perturbation types. The change in bar heights is an indication
of how images are moving closer and further to centroids in the cluster as noise increases.

Figure 7: Perturbed MNIST Accuracy Heatmap, where the accuracies are for all digit classes, given a perturbation type and intensity.

1. Incorporate entropy and entropy apex metrics into our frame-
work. The entropy apex, a point approximately equidistant to all
class centroids, is expected to be a region of high entropy where
misclassified examples cluster.

2. Explore alternative distance metrics, such as cosine similarity,
to measure the relationships between class centroids and predic-
tions. This could offer new perspectives on the geometric properties
of the feature space and how they relate to classification decisions.

3. Integrate our metric with complementary techniques, includ-
ing uncertainty estimation and domain adaptation methods. This in-

tegration could lead to a more comprehensive framework for han-
dling distribution shifts, combining the strengths of multiple ap-
proaches to create more robust and adaptable models.

4. Investigate the application of our methodology to a broader
range of real-world autonomous systems, focusing on how it can
enhance safety and reliability in diverse and challenging environ-
ments.

© 2024 The Authors.
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