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Abstract
Throughout history, the observation of medical and biological samples has been of high importance and has led to many
discoveries. When this process relies on human observation, it can be time-consuming, especially with the advent of tech-
nological advancements that generate more and more images at faster rates. Additionally, some features of the samples can
be undetectable by the naked eye, but with the aid of visual computing techniques, these hidden details can be revealed.
The morphological characteristics of the extracellular matrix play a vital role in cancer and other health conditions. Visual
observations of the ECM can provide valuable insights; however, the task may be tedious and sometimes it is hard to quantify
the differences between samples. In this work, a tracing algorithm is proposed. Furthermore, morphological characteristics
of the extracellular matrix can be extracted with the algorithm to quantify and compare different biological populations.
Experiments revealed that the removal of interactions in fibroblasts affected their ability to form a healthy extracellular matrix
as compared with a wild type population. Here, an investigation of the morphological differences between the ECM of two
populations was conducted. Five images of mutant and five images of wild type cells growing in culture were compared. A
deconvolutional convolutional neural network was used as a pre-processing filtering method to remove noise from the images.
The images are then traced by the proposed algorithm, Trace Ridges, to extract morphological features and visually present
the edges and gaps extracted. Trace Ridges combines methods of Edge detection, watershed, and morphological characteristics
to delineate fibre-like structures. Two morphological characteristics provided statistical differences between the populations:
number of fibres (p− value = 0.00091) and relative area of gaps between the fibres (p− value = 0.014). The number of fibres
detected in wild type was higher than mutant while the relative gaps area size of mutant was higher than that of WT. Trace
Ridges was able to successfully delineate the ECM fibres of mutant and wild type cells and extract morphological features to
show the difference between the populations.

CCS Concepts
• Computing methodologies → Object detection;

1. Introduction

The observation of medical and biological samples has been cru-
cial in many scientific discoveries, from the discoveries of mi-
croorganisms and cell structures observed by Hooke and Leeuwen-
hoek [Ges04] to the discovery of the neural networks and retinal
arrangements by Santiago Ramon y Cajal [Ber94]. Traditionally,
these samples have been observed and analysed by humans, with
their extraordinary vision and brain power. However, with advances
in technology, these experiments now provide far too many images
for a single individual to process in a reasonable time frame. In ad-
dition, sometimes datasets may contain characteristics that are too

subtle for human eyes to perceive and the application of visual com-
puting techniques can reveal interesting features that would other-
wise remain hidden. Thus, these images of medical and biomedical
experiments are now considered as digital images, the data these
images contain can be processed into graphics that can be then in-
terpreted with computing algorithms that can enhance a visual ob-
servation or can extract automatically characteristics of the data.

Morphological attributes of cells have been widely studied, par-
ticularly in the context of cancer [ACQ∗20, MSMB21, WPK∗15]
and other conditions of health and disease [HLHL22]. However,
there is a growing acknowledgment of the impact the microenvi-
ronment that surrounds these cells and influences the development
or progression of the disease [FDMJ10] [MWCU20] [YCH∗24].
In particular, the extracellular matrix (ECM) plays a vital role
in the evolution of cancer [PJ22, WAOMW20, HZW∗21, WM-
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DRH18, PMFT02] and other health conditions [IG18]. Yet, the ex-
tracellular matrix has been widely overlooked [FCC18] in compar-
ison to other factors such as vasculature, macrophages and soluble
factors. A potential cause of this dismissal could be due to the intri-
cate three-dimensional architecture [Yue14, PLG∗21] of the ECM,
which is composed of an array of elements including glycoproteins,
collagen and enzymes. Understanding the structural properties of
these glycoproteins can yield valuable insights especially through
the application of computer vision and visualisation techniques.

In vitro experiments have revealed how certain modifications of
the DNA sequence of cells i.e., creating mutant cells, can provide
completely different characteristics and interaction between cells.
In this paper we investigate how mutant fibroblasts compare against
wild type fibroblasts in the formation of the extracellular matrix.

Whilst visual examinations of the extracellular matrix structure
can unveil compelling properties, relying solely on such observa-
tions can prove challenging to compare populations. Analysing
structural properties of the ECM, such as the shape, distribution,
and count of the fibrial glycoproteins, could offer valuable insights
into the microenvironment or treatment effects. Quantifying these
fibres will showcase their properties.

Several methodologies for tracing have been proposed. Edge de-
tection [Can86], Scale Space [Lin98b, Lin98a], Watershed algo-
rithms [Mey92, Mey94], CT Fire algorithm [BLP∗14, LKP∗20],
Twombli [WPB∗21], Graph Based [GEOS∗23, Gra20] and deep
learning architectures have been widely used like the well-known
U-Net [RFB15]. In a recent comparison [ACACRA24], Trace
Ridges proved to be the most robust and accurate algorithm for
tracing fibre-like structures.

The main contributions of this work are the application of Trace
Ridges as a visual computing technique to extract and visualise bi-
ological differences in the extracellular matrix produced by mutant
and wild type fibroblasts. By leveraging Trace Ridges as a visual
analysis tool, this work highlights the distinct patterns that differ-
entiate the biological processes in these cell types.

Trace Ridges follows a pipeline of traditional image process-
ing steps, and it can successfully delineate the fibres of the ECM
and statistically distinguish between mutant and wild type experi-
ments. Furthermore, it is simple and fast and outperformed all other
methodologies in accuracy.

2. Material and Methods

2.1. Data sets

Mutant/Wild Type (WT) cell preparation and acquisition has been
explained in [GRH∗07]. p110α mutant and wild type fibroblasts
were cultured on a gelatin coated surface treated with glutaralde-
hyde. This facilitates extracellular matrix formation. Subsequently,
five sets of fluorescent images were obtained for both mutant and
WT samples to assess fibronenctin expression (Fig. 1).

2.2. Pre-processing image filters

In the field of image processing, filters are commonly used to mod-
ify an original image into a new image in which the filter has al-
tered the data. Filters can enhance a relevant feature of the data or

(a) (b)

Figure 1: Illustration of various images of the extracellular ma-
trix fibronectin. (a) Images representing mutant cases. (b) Images
representing wild types. It should be noticed the complexity of the
fibres that create the extracellular matrix and the difficulty to anal-
yse these by pure observation.
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Figure 2: Implementation pipeline of Trace Ridges. Fluorescent fibronectin images are run through DnCnn for filtering then they are passed
to Trace Ridges. Labelled fibres and distance maps are produced where fibre and gap analysis could be carried out respectively.

suppress an unwanted characteristic, for instance noise. There are
many types of filters [RH99], of which the most common are the
spatial filters, which multiply the value of the pixels of a region
of the image with a small kernel or filter, the filter is then moved
along the image and the process repeated until all the image has
been multiplied and a new image is produced.

Alternatively, frequency or Fourier filters convert the image into
the frequency domain or frequency domain through the Fourier
Transform [Bra78] (or another transform like Wavelet or Cosine)
and then apply frequency filters on the Fourier domain, apply an
inverse transform to reconvert the result of the process to the spa-
tial domain. The filter function shape varies depending on the pur-
pose of use. Filters can suppress the high frequencies of an image
and smooth the image and reduce noise or they can suppress the
low frequencies of an image to enhance the edges in an image. A
common frequency filter function is the Gaussian filter.

Filters have been used in many imaging domains for various
cases such as facial images [HS16] or MRI denoising [SV17]. Fur-
thermore, with the ever-evolving field of artificial intelligence, deep
convolutional neural networks [II21] can be trained to remove noise
from noisy images and be comparative to the more traditional filter-

ing methods. In the recent comparison [ACACRA24], three meth-
ods of preprocessing filtering were used and DnCnn a denoising
deep convolutional neural network was superior in its filtering per-
formance on fluorescent fibronectin images.

2.2.1. DnCnn filter

DnCnn [ZZC∗17] represents a deep convolutional neural net-
work designed specifically for de-noising noisy images. Employing
residual learning and batch normalisation, this model effectively re-
moves noise from the input noisy observations. Notably, DnCnn
demonstrates proficiency in handling blind Gaussian de-noising
with unknown noise level. Training of the DnCnn model utilised
a dataset compromising of images of fibre-like structures that
are publicly available and found in [BLP∗14, LKP∗20, GEOS∗23,
WPB∗21]. The images were split into two halves, with one por-
tion allocated for training and the other unseen. When necessary,
images were converted to 2-D grayscale to align with the model’s
input requirements. Training parameters included a learning rate of
0.001 and a batch size of 32.
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2.3. Tracing algorithm

The Trace Ridges algorithm was selected for fibronectin tracing and
morphological analysis due to its superior performance compared
to six other tracing algorithms. Some algorithms, like Scale Space
and Edge detection, are general and can be applied for various tasks
beyond fibre tracing. Others such as CT Fire, Twombli and Graph
based methods, are specifically designed for fibre tracing. U-Net
a deep learning architecture was also included in the comparison,
capable to segment any objects all it requires is training images
and patches. Ultimately, Trace Ridges demonstrated the lowest to-
tal distance error with 165,873 pixels compared to the second-best
Graph based method with 200,687 pixels. Total distance error is a
measurement of the total pixels in an image the algorithm trace was
from the manually delineated ground truth. Furthermore, it exhib-
ited the second lowest average distance errors with 9.27 pixels after
Edge detection with 9.1 pixels, but it is argued that it performs best
for this metric due to Edge detection’s nature to over-segment and
trace two edges for a fibre. The average distance error is a mea-
surement of the average number of pixels one fibre trace was far
from the ground truth in an image. Finally, Trace Ridges had the
fastest computational processing time of 2.45s after Edge detection
with 0.467s, with the next algorithm UNET being five times slower
with 14.13s. Additionally, in this study, three pre-processing filters
were applied to deal with noise. The three filtering options were, no
filtering, low pass Gaussian filtering and Deconvolutional convo-
lutional neural network (DnCnn). Pre-processing with DnCnn fil-
tering notably reduced distance errors for fluorescent fibronectin
images. Total distance error with DnCnn was 162,760 pixels com-
pared to 166,690 pixels with Gaussian filtering and 168,170 pixels
with no filtering. Fibronectin images with DnCnn processed faster
having just taken 2.9s compared to 3.1s and 4.0s with Gaussian
and no filtering respectively. The Trace Ridges algorithm uses tech-
niques of Edge detection, watershed, and morphological informa-
tion to trace fibre-like structures. Trace Ridges extracts morpholog-
ical and topological information including fibre length, fibre count,
gap area and orientation and visually presents these observations.
Overall, Trace Ridges emerged as the most robust algorithm.

2.3.1. Trace Ridges

Trace Ridges combines watershed [Mey92, Mey94] to find ridges.
The Watershed algorithm views an image as a topographic surface
where higher intensity pixels represent peaks and hills, and lower
intensity pixels represent basins. The watershed algorithm begins
by calculating the image gradient and selecting labels based on cri-
teria such as local minima and maxima. It then floods the image,
expanding regions around these labels to find the lowest points be-
tween them, forming watershed lines where regions meet. Water-
shed is combined with Edge detection. Edge detection [Can86],
which breaks any ridges that run from a main ridge towards the
sides of the basins and thus leaves the main ridge of a structure
separate from minor ridges.

The Canny Edge detection [Can86], introduced by Canny in
1986, is utilised to detect object boundaries also known as edges
within an image by identifying variations in pixel intensities. Ini-
tially, Gaussian filtering is employed to minimise noise, followed
by non-maximum suppression to refine the detected edges. Thresh-
olding, referred to as hysteresis, is then applied to determine which

edges are retained or discarded. Trace Ridges uses a filter size of
2× 2 of the Canny Edge detector to extract edges representing fi-
brous structures.

Trace Ridges then morphologically selects ridges for length and
brightness, i.e., foreground pixels are those of higher elevation and
the background pixels have low elevations and any ridges of low in-
tensities are discarded. This strategy favours brighter, longer ridges,
which produce cleaner results with fewer traces than other tech-
niques. Finally Trace Ridges visually showcases the fibres delin-
eation and gap analysis to support the metrics results.

Implementation of Trace Ridges is straightforward us-
ing the function "[fibronectinOut,fibronectinOut2,dataOut] =
Trace_Ridges(dataIn)". Here "dataIn" is the input image. The out-
put fibronectinOut lists extracted morphological features which in-
clude but not limited to the number of fibres detected, their ori-
entation and gap analysis. fibronectinOut2 provides visual outputs
including labelled detected fibres, a distance map that shows gaps
of the input image and orientation maps. dataOut displays the de-
tected fibres overlaid on the original image for verification. Trace
Ridges required no other parameters other than the input image.
An example of the implementation pipeline of Trace Ridges for the
fluorescent fibronectin images is illustrated in (Fig. 2).

3. Results

3.1. Morphological comparison of Wild type and mutant
ECMs

Images of the extracellular matrix of two groups (mutant, n = 5,
WT n = 5) shown in (Fig. 1) and (Fig. 3a-b). The images were
processed by Trace Ridges to trace the fibres. Subsequently, two
morphological metrics were derived. Firstly, the count of delineated
fibres was determined (Fig. 3c) and (Fig. 4), this is the number of
edges detected by the algorithm. Secondly, a distance transform
was computed that calculates the Euclidean distance of every pixel
that is not part of an edge, referred to as "gaps", to its closest edge,
and the relative area of the gaps was calculated. Brighter regions
indicate greater distance from a fibre. The relative gap area was
computed for each image (Fig. 3d) and (Fig. 5), representing the
average of all gap sizes relative to the image size.

Boxplots for the two metrics is shown in (Fig. 6), in all cases
there was statistical differences with p − values of 0.00091 and
0.014.

The number of fibres detected in WT were higher than that of
the mutant presented in (Table 1). The highest number for WT was
2363, while for the mutant is 1851. The lowest number of fibres
detected for mutant was 1503 and for WT 1964. Therefore, the me-
dian of WT was higher than mutant. The WT possessed a larger
range (Fig. 6). The lowest value of number of fibres detected in WT
was greater than the highest value for the mutant. Visually by ob-
serving (Fig. 4), the mutant culture images (Fig. 4a), the fibres are
more dispersed and spread out and are fewer in quantity in com-
parison to the WT (Fig. 4b) where the fibres appear to be tightly
packed and are abundant. A higher number of fibres detected in the
wild type extracellular matrix suggests that, biologically, it con-
tains more fibres on average compared to the mutant fibroblasts.

© 2024 The Authors.
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(a) (b)

(c) (d)

Figure 3: (a) Fluorescent Fibronectin region of interest (ROI). (b)
DnCnn application on Fluorescent Fibronectin (ROI). (c) Number
of edges (ROI). Colours are randomly assigned. (d) Gaps between
fibres (ROI). Brighter yellow means pixel is further away from an
edge.

Num Edges Rel Gap Area
Mutant_1 1503 0.5461
Mutant_2 1677 0.5215
Mutant_3 1708 0.5542
Mutant_4 1536 0.5353
Mutant_5 1851 0.5385

WT_1 2084 0.5193
WT_2 2129 0.5095
WT_3 2363 0.4926
WT_4 2068 0.5278
WT_5 1964 0.5188

Table 1: Morphological analysis on five sets of mutant and WT
images. Num Fibres is number of edges detected in an image. Rel
Gap Area is the relative gap area size.

(a) (b)

Figure 4: Fibres detected by Trace Ridges. Colours are assigned
randomly to distinguish different edges. (a) Images representing
mutant. (b) Images representing WT. Black regions in the images
are gaps between the fibres. Visually, the wild type extracellular
matrix exhibits a higher fibre density with minimal gaps between
the fibres. In contrast, the mutant fibres appear more dispersed,
with the images showing significantly larger gaps between them.

© 2024 The Authors.
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(a) (b)

Figure 5: Relative gap area size. Brighter yellow regions indicate
pixel further away from fibres. (a) Images representing mutant. (b)
Images representing WT. Black regions in the image indicate the
presence of fibres. Visually, the wild type extracellular matrix shows
smaller gaps and more frequent dark regions, indicating a denser
presence of fibres and fewer bright areas. In contrast, the mutant
images display larger, more prominent bright yellow regions, sug-
gesting greater and more frequent separation between the fibres.

The wild type also exhibits a broader range of fibre counts across
the images, indicating greater variability. In contrast, the mutant fi-
broblasts appear to have a more consistent, predictable number of
fibres, as they fall within a narrower range.

Mutants had a higher average relative gap size in comparison
to the WT presented in (Table 1). The highest mutant value was
0.5542 and 0.5278 for WT. The lowest value for mutant was 0.5215
and WT was 0.4926. Therefore, WT had a bigger variance than
the RBD (Fig. 6), interestingly the mean for WT was close to the
highest value. Observing the visual representation of the gaps in
(Fig. 5). The mutant culture images (Fig. 5a) have frequent regions
with large intensities (yellow) indicating the presence of a larger
number of large gaps in comparison to the WT images (Fig. 5b),
where the presence of darker regions (black) is more common in
comparison. Larger gaps in the mutant extracellular matrix suggest
increased separation between the fibres, which may indicate a lower
fibre density, and a less complex structural architecture compared
to the wild type.

These results are inversely correlated, the greater the number
of fibres that are present in the extra-cellular matrix, the smaller
gaps that will occur. This was represented in [GRV19]. Fibronectin
growth was observed with and without the addition of Ficoll, the
addition of Ficoll grew more fibres of fibronectin which prompted
smaller gaps.

3.2. Conclusions

In this paper, Trace Ridges was used to segment images from two
different populations, mutant cells and wild type cells (WT). Trace
Ridges was chosen for its robustness, accuracy, processing time
and visualisation capabilities. DnCnn pre-processing filtering was
employed to minimise noise and enhance features of the images.
These segmentations were then used to explore the morphological
features of the fibres and find characteristics that can distinguish
between the two populations. Whilst these results were obtained
with a relatively low number of images, they confirm that the Trace
Ridges algorithm can be successfully used to compare the extracel-
lular matrix of two different populations, and that there is a strong
statistical difference for the two metrics extracted. Number of fi-
bres exhibited a p− value of 0.00091 and 0.014 for relative gap
area size.
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0.014.
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