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Abstract
We present a data structure that allows 3D point clouds with arbitrary attributes to be indexed in real time. We focus on
large datsets from mobile mapping systems such as airborne and terrestrial laser scanners. Compared to traditional indexing
approaches running offline, our data structure can be created incrementally while the points are being recorded. This allows the
data to be used (i.e. analyzed or visualized) already during acquisition or immediately after it has finished. The data structure
enables queries based on spatial extent and value ranges of arbitrary attributes. This is in contrast to existing works, which
focus on either spatial or attribute indexing, typically are not real-time capable, or only support a limited set of attributes. Our
approach combines Modifiable Nested Octrees and extended Binned Min-Max Octrees. Using a subset of the well known AHN4
dataset with 138 million points, we evaluate the approach, assess quality and query performance, and compare it with an existing
state-of-the-art solution. On commodity hardware, our data structure can process 1.97 million points per second, which is more
than most commercially available laser scanners can record. When filtering points by attribute value ranges, it also reduces the
number of octree nodes that have to be loaded, and it substantially outperforms naive sequential point filtering.

1. Introduction

Geospatial point clouds are becoming increasingly important in
many areas. For example, architects and urban planners use them in
building construction projects [VBB22] or for urban infrastructure
planning [PSW20]. Other applications include the rollout of fibre
optic lines [KBW∗24], district heating planning [LDME∗22], or
flood modeling [LHL∗21]. On a larger scale, point clouds are used
to generate digital elevation models [PB07] and for the mapping and
regular monitoring of forests [AMLS22] or railway lines [TAL22].

Point clouds are captured using terrestrial or airborne LiDAR
(Light Detection And Ranging) technology [WYTT21, LLW∗21].
LiDAR scanners are becoming more and more precise and record
millions of points per second. These points contain not only spatial
coordinates but a variety of attributes such as color, GPS time, and
the intensity of the reflected laser beam. More attributes such as
the 3D normal for each point or its semantic classification can be
derived from the recorded information and are often also included in
the final result. The LAS specification [Ame19], a widely used point
cloud file format, defines a range of possible attributes. Figure 1
shows screenshots of a few selected ones.

LiDAR-recorded geospatial point clouds are usually very large,
both in terms of data volume and area. It is not uncommon that
datasets reach sizes of many terabytes. Some of them even cover
whole countries, e.g. the AHN4 dataset of the Netherlands [AHN20].
Analyzing and visualizing such large datasets requires sophisticated
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Figure 1: A selection of point attributes in the AHN4 dataset
[AHN20], colored by value

acceleration structures. While spatial indexes enable fast access to
specific areas of the point cloud in different levels of detail, attribute
indexes allow the points to be quickly filtered based on given criteria
or value ranges. A combined index, for example, would be able to
return all points that lie within a given spatial extent (or bounding
box), have been recorded in a certain period of time, and belong to
a specified class (e.g. Tree or Building).
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The process of creating such an index is called indexing. The
current common practice is to index point clouds offline, i.e. some
time after they have been recorded with tools such as Schwarzwald,
PotreeConverter or Entwine [BK20,SOW20,Hob24]. This out-of-
core process often takes several hours and doing it later unneces-
sarily extends the time it takes from recording the data until it can
actually be utilized.

Many applications, however, could benefit from a more immediate
access. For example, if regular processes such as railway monitoring
for predictive maintenance had access to the data right after it has
been acquired, they could react much quicker to imminent faults.
The same applies to emergency cases (e.g. earthquakes or floods)
where immediate availability of analysis results is key.

Going one step further, analyzing and visualizing a point cloud
already while it is being recorded would enable real-time quality as-
surance. Errors in the recording or missing spots could immediately
be displayed to the operator (e.g. on a tablet computer) who could
then directly fix them. This would avoid having to repeat the data
acquisition process later, which is time-consuming, cost-intensive
and, again, extends the time until the data can be put into use.

Processing LiDAR point cloud data in real time is, however, rather
challenging as modern laser scanners record millions of points per
second. A real-time indexing algorithm has to be able to process
points at least as fast as the laser scanner produces them. In ad-
dition, querying the index during acquisition (e.g. for live quality
assurance), requires it to be responsive and to return results quickly.

In this paper, we present an approach to point cloud indexing
that can be done in real time, i.e. during the data acquisition and
as fast as the points are produced. Compared to previous work, our
approach not only considers the location of the points in R3 but also
all their attributes. It allows the point cloud to be spatially queried
based on a bounding box or a view frustum, and to be filtered by
ranges of attribute values. At the same time, the index contains a
level-of-detail structure and can therefore be used for interactive
visualization. Spatial and attribute filters determine, which parts of
the point cloud should be returned at the desired level of detail.

The main contribution of the paper is the Min-Max Modifiable
Nested Octree (M3NO) data structure. It is based on the real-time
capable Modifiable Nested Octree (MNO) [BDSF22] and combines
it with the idea of the Binned Min-Max Quadtree [ZY10], which we
extend to work in real time.

We evaluate our data structure with a real-world dataset and based
on the following research goals:

G1 – Real-time indexing Our indexing algorithm should be able
to insert points into the M3NO structure at least as fast as they are
being recorded by a typical commercially available laser scanner.

G2 – Query Data Reduction The amount of data that needs to be
loaded into memory during querying relative to the size of the result
set is a quality metric for every index. Our goal is to eliminate as
many octree nodes as possible early in the query process to reduce
the number of points that need to be sequentially filtered later.

G3 – Query Time Reduction Compared to naive sequential filter-
ing without an index, our data structure should substantially decrease

the query execution time. Furthermore, the query times should be
comparable or better than those of existing approaches.

For reproducibility, our implementation is available under an
open-source license on GitHub [Lid24].

The remainder of the paper is structured as follows. We first sum-
marize related work in the area of point cloud indexing, compare it
to our approach, and describe the research gap we bridge (Section 2).
We then describe the M3NO data structure in detail and describe
how indexing and querying work (Section 3). After this, we evaluate
our approach based on the research goals defined above (Section 4).
The paper finishes with a conclusion and an outlook on future work
(Section 5).

2. Related Work

Research in the area of point cloud indexing can be divided into
two sub-areas: data structures for spatial indexing (Section 2.1)
and approaches that allow arbitrary point cloud attributes to be
indexed or that combine spatial and attribute indexing (Section 2.2).
In this section, we summarize existing approaches and discuss their
suitability for real-time indexing.

2.1. Spatial Indexing

A well-known data structure for spatial indexing is the k-d-
tree [Ben75]. Each node in such a tree represents a plane that sub-
divides a k-dimensional space along one axis. For each tree level
l ∈ N≥0, a different axis i ∈ [0,k) is selected, such that i = l mod k.
If the position of the partition plane is chosen based on the distri-
bution of the points in space, the tree becomes well-balanced. This
requires all points to be known and sorted along the corresponding
axis. Adding points later either results in an unevenly distributed tree
or causes expensive rebalancing. This renders the k-d-tree unsuitable
for real-time indexing where points might arrive at any time.

The same applies to the R-tree, a data structure similar to a one-
dimensional B-tree but supporting multiple dimensions [Gut84]. In
an R-tree, each node represents a bounding rectangle that encloses a
group of points or other bounding rectangles. Since the number and
area of the bounding rectangles depend on the points in the tree and
inserting new points requires rebalancing, real-time indexing cannot
be implemented efficiently.

An efficient data structure for R3 is the octree. It divides the space
independently of the points to be indexed and centrally along all
three axes into eight sub-spaces [Mea82, FB74], which are then fur-
ther divided recursively. The octree does not require rebalancing, but
it still can be unbalanced if the data is unevenly distributed. Building
an octree requires the bounding box of all points to be known in
advance, which makes it unsuitable for real-time applications.

Another way to index a spatially distributed set of points in linear
time is to use a space-filling curve such as a Z-order curve [Mor66]
or a Hilbert curve [Hil91]. As the name implies, space-filling curves
traverse the entire n-dimensional space and assign an ascending
index to each point (or cell) visited. This maps the n-dimensional
space to one dimension, which in turn allows points to be inserted
and queried through binary search in O(logn) time. Most space-
filling curves preserve locality to a certain degree, so that points that
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are close to each other in space are also close to each other on the
one-dimensional curve. They have been used for point cloud index-
ing [GVOC18], distributed processing [LBA16], as well as to build
continuous levels of detail [LVOMV20]. Since curve indexes can
typically be calculated in constant time and independently of each
other, space-filling curves enable efficient and massively parallel
point cloud indexing [KB21].

As space-filling curves and octrees are closely related, they share
the same requirement that the bounding box of all points needs to
be known in advance, which is impractical in real-time scenarios.
Furthermore, as described in Section 2.2, space-filling curves are
not able to index an arbitrary number of attributes.

The Modifiable Nested Octree (MNO) is a special type of octree,
where each node can contain a set of points stored in a regular
three-dimensional grid [Sch16]. This allows the space to be divided
both spatially and into levels of detail. The points in the root node
correspond to the lowest level of detail (LOD 0), and each lower
level in the tree corresponds to a higher level of detail.

MNOs are not capable of real-time indexing because, as with
all octrees, the bounding box of the data is required in advance to
define the fixed planes for subdivision. A solution to this problem
was presented by Kocon [KB21] and adapted for MNOs by Bormann
et al. [BDSF22]: In a large regular grid, an arbitrary number of MNO
trees are created. As soon as points fall into a new cell of the grid, a
new MNO tree is created in that cell. The approach presented in this
paper is based on this idea. We describe it in detail in Section 3.

2.2. Attribute Indexing

A straightforward way to index a point cloud by attribute is to store
it in a database and reuse the existing indexing capabilities. Dobos
et al., for example, present a concept for a database model, in which
each row represents a single point [DCSG∗14]. The coordinates and
attributes are all stored in different columns. A primary database
index is then created on the coordinates and further indexes can be
created on the attributes. The drawback is that each index structure
must be evaluated separately for a query, and then the intersection of
the results must be formed, which involves considerable overhead.

Storing individual points as records in a database is not effi-
cient given the enormous number of points and the large number
of attributes. The PostgreSQL extension pgPointCloud provides a
solution by grouping nearby points into patches [RBBL21]. Each
patch stores the minimum, maximum, and average value for each
coordinate and attribute. As Bormann et al. have shown, the per-
formance of pgPointcloud in terms of indexing and querying is not
competitive and in many cases even slower than working directly
on the raw data [BKW22], which makes it unsuitable for real-time
indexing. However, saving points in chunks instead of saving each
point individually is a useful method to keep the size of the index
small and to simplify compression [CPP17].

Another way of indexing attributes is to use space-filling curves.
Similar to spatial indexing (Section 2.1), they can map the multidi-
mensional attribute space to one dimension. For example, HistSFC
presented by Liu et al. [LVOMV20] supports indexing of both spa-
tial coordinates and attributes. However, Liu et al. discovered that

space-filling curves do not scale well when applied to an arbitrary
number of attributes. In their paper, they show that in tests on the
AHN2 dataset, indexing with four dimensions already results in
a false positive rate of 164%, which increases rapidly with addi-
tional dimensions. This means that only a small number of unwanted
points can be discarded in the querying process. To deal with this
problem, some approaches automatically rank which attributes in a
point cloud are most important to index and should, therefore, be
included in the index structure [NDAK20]. Since our aim in this
paper is to index arbitrary attributes (and not just a limited number),
space-filling curves are not an option for attribute indexing.

An example of an attribute index structure that is closely related
to a spatial index is presented by Ladra et al. [LRLPSC22]. They
extend the Binned Min-Max Quadtree data structure [ZY10] and
apply it to LiDAR point clouds. The points are sorted into an octree,
and for each subtree, they are sorted by attribute. Since the algorithm
has access to the whole dataset, the minimum and maximum values
of all attribute values within each subtree are known. This allows
entire subtrees to be skipped during querying if the value ranges
do not match the query condition. However, since all points must
be known in advance, the data structure is not real-time capable.
Nevertheless, the basic idea of combining a spatial index (i.e. an
octree) with an attribute index and storing attribute value ranges for
subtrees fits well with our goals and provides a basis for the data
structure presented in this paper.

2.3. Research Gap

It can be seen that there are a variety of approaches to spatial index-
ing, but very few of them support real-time indexing and levels of
detail. The approaches for attribute indexing are either not real-time
capable or only provide support for a limited number of attributes.

A data structure that works in real time and supports both spatial
indexing and indexing of an arbitrary number of attributes of any
type does not exist yet. In this paper, we create such a novel data
structure by extending and combining Modifiable Nested Octrees for
spatial indexing with the ideas behind Binned Min-Max Octrees and
pgPointCloud for attribute indexing. The resulting data structure is
called Min-Max Modifiable Nested Octree (M3NO). The following
section describes it in detail.

3. Min-Max Modifiable Nested Octree (M3NO)

The Min-Max Modifiable Nested Octree consists of a spatial index-
ing structure and an attribute indexing structure. In this section, we
describe both components and give details on the insertion process.
Finally, we explain the general querying process.

3.1. Spatial Data Structure

The spatial data structure is based on the work of Bormann et
al. [BDSF22]. It consists of an arbitrary number of MNO trees
in a regular grid with a fixed cell size. In a real-time scenario, the to-
tal size of the point cloud is not known in advance, as new points are
recorded continuously. Due to this, the indexing algorithm creates
new root nodes each time points arrive in grid cells where no MNO
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LOD 2

LOD 1

LOD 0

Figure 2: Modifiable Nested Octree from Bormann et al. [BDSF22]:
In the upper region, three root nodes are generated, corresponding to
the lowest level of detail (LOD). In the higher LODs, many smaller
nodes contain more points in total and thus provide a higher level of
detail. For illustration purposes, each node in the figure has a grid
of 4×4 cells in which the points are stored.

tree has yet been created. This allows the point cloud to arbitrarily
expand during runtime.

Each MNO consists of octree nodes, which recursively divide
the space into eight subspaces. This halves the size of the nodes
along each axis with every additional level in the tree. All nodes
contain a regular grid of 128×128× 128 cells to store the points.
A maximum of one point can be stored in each cell of this grid. The
size of 1283 for the regular grid was used by Schütz for the original
data structure and also gave us the best results [Sch16]. In most
cases, the regular grids are only filled to a very small extent with
our test data.

By halving the node size at each level along all axes, the distances
between the regular grid cells are also halved. This results in higher
densities of points deeper in the tree, and thus a higher level of detail.
Figure 2 illustrates this for a two-dimensional point cloud.

The data structure saves all nodes with the corresponding points
as individual files, either in the compressed LAZ format [Ise13]
or the uncompressed LAS format [Ame19]. Using this out-of-core
approach allows point clouds exceeding the size of main memory to
be indexed. When nodes need to be read or modified, they are loaded
into a cache with a definable maximum capacity. If it is exceeded,
the least recently used nodes are written back to disk.

3.2. Indexing Process

The indexer receives incoming points in real time to sort them into
the point grid cells of the octree nodes and to update the attribute

index structure. For this purpose, each node has an additional in-
memory point buffer that collects points for the associated subtree.
This is called the inbox of a node. For each incoming point, the
indexer looks for an MNO tree in the regular grid of MNO trees. If
there is one, it places the point in the inbox of the root node of the
tree. If no tree exists at that location, a new one is created.

Multiple worker threads insert the points from the inboxes of the
nodes into the corresponding point grid cells in parallel. A priority
function selects which inboxes are processed first based on the age
of the task and the number of items to be inserted. Each thread then
performs the following steps:

1. The thread takes all points from a non-empty inbox of a node.
2. It creates the corresponding node if it does not already exist.

Otherwise, unless the node is already in the cache, it loads it
from disk.

3. The points from the inbox are inserted into the point grid of the
node. To achieve a visually more even point distribution, this is
done using a grid center sampling approach, in which the point
closest to the center of each cell is selected from all points in the
inbox [Sch16, SOW20].

4. If a cell is already occupied, the point is passed to the inbox
of the corresponding child node, where the process is repeated.
Each point is stored only once.

A more detailed description of the insertion process is given in the
work of Bormann et al. [BDSF22].

3.3. Attribute Data Structure

The attribute data structure is based on the concepts of Ladra et.
al. [LRLPSC22], which we adapted for real-time capability. The
structure stores additional information about the point attributes
contained in each subtree. Similar to the approach of pgPoint-
Cloud [RBBL21] the attribute value ranges are stored for this pur-
pose (Section 3.3.1). The construction of this data structure is inte-
grated with spatial indexing.

3.3.1. Value Range Index

Unlike proposed in the work of Ladra et al., where all points had
to be known in advance, in a real-time scenario the minimum and
maximum values of each attribute cannot be pre-computed. Instead,
in our data structure, we incrementally update the value ranges for
each subtree whenever a new point is added to it, which enables
real-time capability.

When there are points in an inbox of an octree node, the worker
thread scheduled for that node first computes the value ranges of
all attributes based on the points in the inbox. This information is
then used to expand and update the attribute value ranges of the
subtree. Note that storing the attribute value ranges only for subtrees
requires less memory than indexing them point-wise. This allows
the attribute data structure to be kept permanently in memory due to
its small size, resulting in higher insertion rates and query execution
times due to faster access times.

A simplified example of this attribute index structure can be seen
in Figure 3, where only the GPS time and intensity attributes are in-
dexed. For legibility, this example uses a two-dimensional quadtree
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Intensity [0;255]
GPS Time [-20;500]

Intensity [10;240]
GPS Time [104;290]

Intensity [0;190]
GPS Time [-20;13]

Intensity [123;255]
GPSTime [-12;500]

Intensity [10;235]
GPS Time [305;320]

Intensity [20;100]
GPS Time [192;239]

Intensity [10;20]
GPS Time [104;190]

Intensity [50;210]
GPS Time [154;290]

Intensity [90;240]
GPS Time [130;140]

LOD 0

LOD 1

LOD 2

Figure 3: Example of attribute index structure while filtering for
intensities in the range [230; 255] and a GPS time in the range
[300; 400]. Orange nodes are discarded by the attribute index
structure, blue nodes are loaded.

Value
range

Search
range

Value
range

Search
range

Figure 4: Histograms of subtree attributes: Although the search
range overlaps with the value range of the subtree, no attribute
value is contained in the search range.

instead of a three-dimensional octree. In each node, the value ranges
for each of the two attributes are noted for the points in the un-
derlying subtree (including the node itself). Nodes with intensities
in the range [230; 255] and a GPS time in the range [300; 400]
are searched. The value ranges of the root node overlap with the
attribute filters. Therefore, the file associated with the root node
has to be loaded from disk and all value ranges of the child nodes
have to be checked. The first two child nodes in LOD 1 (orange)
do not contain any value ranges that overlap with the attribute filter.
Therefore, no searched point can be contained here, and we can
skip both subtrees entirely. The value ranges of the remaining two
octree nodes in LOD 1 (blue) overlap with the attribute filters and
therefore have to be loaded from disk. After that, all loaded nodes
are deserialized and the contained points are filtered sequentially.

It is still possible that a node does not contain any points that
match the attribute filter, even if the value ranges overlap. This is
illustrated in Figure 4. This case is called a false positive node and
has a negative impact on querying performance.

3.4. Querying

Queries are defined by a spatial component and an attribute filter.
The spatial component is defined by the spatial extent (e.g. using
a bounding box) and the maximum level of detail desired. The
attribute filter consists of value ranges for attributes. Only the points
which fulfill the spatial component and whose attribute values lie
in all search ranges should be returned. To execute the query, the
algorithm traverses all MNO trees. It then runs through a series
of filtering stages as shown in Figure 5. It checks for each node
beginning at the root whether it satisfies the spatial component, i.e.
whether it is located in the searched bounding box and the level of

Skip subtree

no

yes

Node matches
spatial component

no

yes

All search ranges
overlap with subtree

value ranges

Load node

Filter points
sequentially

Figure 5: Filtering stages when querying a node

the node is less than or equal to the maximum searched level. If the
spatial component does not apply to the node, the entire subtree can
be skipped. If the spatial component is evaluated as positive, the
algorithm checks whether all attribute value ranges of the subtree
overlap with the corresponding search ranges. Otherwise, the subtree
can be discarded. If an overlap is detected, the file corresponding to
the node gets loaded and filtered sequentially by spatial component
and attribute. After this, the algorithm continues with the children.

The resulting point clouds of the filtering stages are shown
in Figure 6. Here, Figure 6a shows a portion of the AHN4
dataset [AHN20] colored by classification value. Filtering is based
on the building classification value (shown in green). In Figure 6b,
only the range filter has been applied. Some subtrees have already
been sorted out, which can be seen as rectangular white spots. How-
ever, there are some red and yellow areas, especially on the left side,
which do not contain any building classification and were returned
anyway. These are false positive results of the range filter. The points
in the returned nodes can then be filtered sequentially according to
the building classification, leaving only the green building points.
This sequential filtering could have been done without the range fil-
ter. However, it would have taken much longer, because all existing
nodes would have been loaded.

4. Evaluation

For evaluation purposes, we implemented the data structure in our
open-source software called Lidarserv [Lid24] and measured vari-
ous properties using exemplary test data. The same measurements
were also carried out with pgPointCloud for comparison. The test
environment and dataset are described in Section 4.1. The results
are presented in Section 4.2.

© 2024 The Authors.
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(a) Raw, unfiltered point cloud (b) Point cloud after range filter (c) Final result after sequential point filtering

Figure 6: The AHN4 pointcloud is colored by classification. The figure shows the results of the individual attribute filtering stages while
querying for buildings (green). Note that the range filter already removes a range of nodes, which then no longer have to be filtered sequentially.

4.1. Test Setup

Lidarserv provides a server that can be used to index and query
points in real time with the data structure explained in Section 3.
The software package includes an evaluation program that indexes a
point cloud as fast as possible to determine the maximum indexing
speed, which was used for the following measurements. All mea-
surements were executed on a commodity Linux system with an
Intel® Core™ i7-8700 processor, 32 GB of RAM, and SSD storage
with a write speed of 365 MB/s and a read speed of 530 MB/s.

A subset of the AHN4 dataset containing 138 million points was
used as a test dataset. AHN4 covers the entire Netherlands and
was recorded with state-of-the-art airborne laserscanning technol-
ogy [AHN20]. The selected section is a consecutive flight path with
continuous time to simulate real-time acquisition. It was recorded
with an average of 1.92 million points per second. Prior to the evalu-
ation, we configured the node and cache size of lidarserv to achieve
the best performance for the AHN4 dataset. We set the root node
size to 32.77 m, limited the least recently used cache size to 10 000
octree nodes, set the number of threads to 32, and disabled compres-
sion for the indexed files. For the pgPointCloud measurements, we
chose a PDAL pipeline and a PDAL chipper with a capacity of 400
to divide the points into patches for the insertion process [PDA24].

4.2. Results

We took measurements for each of the three goals of the paper.
The goal of real-time capability (G1) was checked by measuring
the maximum possible indexing speed (see Section 4.2.1). The
data reduction goal (G2) was measured by running several sample
queries and recording the number of nodes and points returned
(Section 4.2.2). The time reduction goal (G3) was evaluated by
measuring the execution time of sample queries (Section 4.2.3).

4.2.1. Real-Time Indexing

In order to reach the goal of real-time indexing, our data structure
had to be capable of processing more points per second than received
from the LiDAR sensor. The speed of indexing was evaluated with
both compression enabled and disabled. The measured indexing
speeds are listed in Figure 7.

Lidarserv
No Compression

pgPointCloud
No Compression

Lidarserv
Compression

pgPointCloud
Compression

0.0 M

0.5 M

1.0 M

1.5 M

2.0 M

In
se

rti
on

 R
at

e 
| P

oi
nt

s/
s

Scanner Speed1.99 M

0.08 M
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Figure 7: Insertion speed comparison: Lidarserv indexes the points
considerably faster than pgPointCloud. Furthermore, the system is
capable of exceeding the threshold required for real-time indexing
of the AHN4 dataset.

The measurements show, that with just our commodity hardware,
we can already surpass the point rates of many commercially avail-
able airborne LiDAR scanners, such as the RIEGL VQ-1560i-DW
with 1.33 million measurements per second on the ground [RIE22].
Our test dataset was recorded with an average rate of 1.92 million
points per second, which we just about exceeded with our fastest
insertion rate measurement of 1.99 million points per second. It is
noteworthy, that the overhead induced by the attribute indexing on
top of the spatial index is fairly small. In comparison to pgPoint-
Cloud, our indexing speed is 25 times faster, which is a significant
improvement.

4.2.2. Query Data Reduction

The second goal addresses the quality of the index in its ability to
reduce the amount of data that has to be loaded. This is measured
in the number of nodes and points that cannot be eliminated by the
index despite not matching the query. For this, we defined a set
of sample queries (see Figure 8). To better show the differences
between the attribute filters, the spatial component of the queries
was chosen to cover the entire point cloud with all LODs.
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(a) Time slice (b) Classification ground

(c) Classification buildings (d) Classification vegetation

(e) Normals vertical (f) Intensity high

(g) Intensity low (h) Number of returns more than one

(i) Time slice & ground classification

Searched points

False positive points

Discarded points

Figure 8: Sample queries: the searched points are displayed in
green. The false positive points returned from lidarserv are marked
in yellow. Discarded points are shown in grey.

Figure 9 provides an overview of how many points are searched
for each query and how many were returned by Lidarserv and pg-
PointCloud. This allows the efficiency of the attribute index struc-
tures to be assessed. Fewer points returned by both range filters
indicate a higher efficiency and a faster query. The various queries
have very different selectivity, which is why the results also differ
between the queries.

Both approaches allow for removing a high number of points
before sequential filtering. A greater range of points can be filtered
out when filtering for attributes, where points spatially close to each
other have similar values (e.g. time or classification). pgPointCloud
achieves better results due to a smaller average patch size.
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Figure 9: Query comparison by number of points between lidarserv
and pgPointCloud
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Figure 10: Query comparison by number of nodes between lidarserv
and pgPointCloud

Figure 10 compares the percentage of nodes/patches returned
from the attribute index. Here you can see that Lidarserv can filter
out more nodes on average than pgPointCloud. This is due to the
fact that Lidarserv has a tree structure with nodes of different sizes
and therefore contains many small nodes with few points, which
have a higher probability to be filtered out.

Note that even if the point reduction is not optimal, the good
node reduction helps lidarserv decrease the query time due to the
relatively high overhead for loading each node. This is especially
true for cases where the index allows many nodes with only few
points to be eliminated.

4.2.3. Query Time Reduction

The index structure should decrease query execution times for end
users or connected applications, enabling interactivity and short

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
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Figure 11: Query time comparison between lidarserv and pgPoint-
Cloud

waiting times. In Figure 11, we compared the query times of Li-
darserv and pgPointCloud. The results demonstrate that, in all test
queries, the range filter significantly reduces query time in compari-
son to naive sequential point filtering. Lidarserv even demonstrated
superior querying speeds, with an average of 1.22 Mpts/s, compared
to pgPointCloud, which achieved only 0.22 Mpts/s.

5. Conclusion

In this paper, we presented the M3NO data structure, which provides
means to index and query geospatial 3D point cloud data acquired by
LiDAR devices in real time, i.e. while they are being recorded. The
data structure consists of both a spatial index and an attribute index,
which enables point cloud filtering based on spatial component
and attribute value range. Compared to existing approaches, M3NO
works in real time and with an arbitrary number of attributes of any
type. It outperforms the state-of-the-art solution pgPointCloud in
terms of indexing and querying speed and even has additional LOD
support. We have evaluated the data structure with regard to the
achievable indexing performance (G1), the number of octree nodes
that need to be loaded into memory during querying (G2), and the
query time (G3). In summary, we managed to meet all three of our
research goals.

In comparison to naive sequential point filtering, we can skip
entire octree nodes that do not contain any matching points, while
naive filtering always requires all points to be loaded. M3NO espe-
cially benefits from selective queries and from queries over attributes
that offer a high spatial locality.

Our point cloud index combines attribute and spatial queries with
the support for multiple levels of detail. While the first is useful for
many analysis tasks, the latter is a requirement for efficient point
cloud visualization. To the best of our knowledge, HistSFC by Liu et
al. is the only other approach that does that [LVOMV20]. However,
their approach is based on space-filling curves that do not scale well
with the number of attributes, which Liu et al. already recognize.
Our data structure is not limited in this regard.

In addition, M3NO is capable of real-time indexing. We have
evaluated this using a subset of the real-world AHN4 dataset with
138 million points. AHN4 has been recorded with an average of 1.92
million points per second. We were able to achieve a higher indexing
speed of 1.99 million points per second already on commodity
hardware. Using a more modern CPU and a faster SSD drive would
lead to even better results.

We were also able to show that our data structure is fast enough
to support queries in real time. Bormann et al. have already demon-
strated this for the spatial index [BDSF22], but M3NO can now
also index arbitrary attributes. Combined with the level-of-detail
support, this enables applications such as live quality assurance, e.g.
through visualization on a tablet computer while recording. This
allows errors and missing spots to be fixed already during the ac-
quisition process and avoids time-consuming and costly repeated
acquisitions.

In any case, indexing points with M3NO while recording allows
the point cloud to be used right after the data acquisition process has
finished. Traditional downstream batch indexing, which is usually
started some time later and which may take many hours, can be
entirely skipped. This is useful in any situation where timely access
to data is of importance, for example in emergency cases.

Due to the strong data dependency, it would be interesting to
test the approach with other airborne and terrestrial datasets in the
future. All known indexing approaches usually require parameters
that are adapted to the dataset and the application. Here, either the
parameter selection could be automated, e.g. based on point density,
or a data-independent approach could be developed.
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