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Abstract
Smart Cities are characterised by their ability to collect and process large volumes of sensor data. Visual analytics is then
often required to make this data actionable and to allow decisions to be made in support of the well-being of inhabitants. In
this study, using Bus Open Data, we consider how space-time clustering can be used to generate visual summaries of traffic
congestion. Using a space-time extension of DBSCAN, our clustering procedure is evaluated with respect to both Euclidean
distance and street network distance. Results show that network-based distance metrics improve the clustering procedure by
generating clusters with less uncertainty. Moreover, congestion clusters derived from network-based distances are also more
likely to last longer and to precede future congestion appearing nearby. We suggest that network-based distances might provide
greater opportunity for more impactful traffic control room decision-making and we discuss steps towards a near real-time
system design that can be used in support of operational decision-making.

CCS Concepts
• Human-centered computing → Visual analytics; Geographic visualization; Information visualization; • Information sys-
tems → Clustering; Sensor networks; Data analytics;

1. Introduction

A proliferation of sensors within our urban environment, which
has led to concepts such as the Smart City, provides substantial
challenges for visual analytics [ZWC∗16]. For situations in which
timely decisions may have a significant impact on human well-
being, there is growing recognition that a human-in-the-loop can
provide accountability and safeguards against algorithmic unfair-
ness. However, this stresses the importance of designing human-
in-the-loop systems that are reliable, trustworthy and manageable
for the humans interacting with them. In high-volume data envi-
ronments, visual analytics supports this interaction, and often per-
forms the role of summarising the data for human decision-makers
in a way that focuses their attention towards more salient features
(see, for example, [PCRHS18]).

In this study, using data from the Bus Open Data Service in
England [Dep], we design and evaluate visual summaries of traffic
congestion to support human decision-makers in situations such as
traffic control rooms. We define traffic congestion as space-time re-
gions constrained by the street network with a high density of vehi-
cles travelling at low speed. As such, we adopt a density clustering
algorithm known as DBSCAN [EKSX96], with adjustments for the
identification of clusters in space-time. Such algorithms are well-
suited to the identification of traffic congestion due to their ability
to identify observations in low density regions as noise, avoiding
false positive identification of congestion events [AAH∗11].

Our visualisation is designed to be used within a transport con-
trol room, supporting decision-makers who are required to identify
appropriate responses to remediate the emergence of unexpected
congestion for example due to an accident or protest. This adds a
requirement for near real-time operation, so that timely decisions
can be made in response to congestion. Our visualisation design
uses bivariate vizent glyphs [HcF∗24] plotted at centre points of
identified congestion clusters over a geographic map of the study
area. In our work to date, we have used animation to visualise time,
overlaying clusters on moving bus trajectories to demonstrate that
the clusters effectively capture congestion. An example of such a
visualisation, which we have presented to transport stakeholders, is
provided in supplementary materials, and a still is shown in Fig-
ure 1. However, for control room settings, in which data visuali-
sations may be competing for attention with other priorities, plot-
ting individual trajectories can increase visual clutter [AA11]. Fur-
thermore, overlapping of points masks the true size of congestion
events. There is a need, therefore, to aggregate trajectories so that
only congestion events are displayed. For such cluster-only visual-
isations, assurance is required that clusters presented to the viewer
faithfully reflect the congestion situation on the road network.

As a case study, we use a two-week period 1st-14th November
2023 within central London. This period contains two days during
which there were known significant disruptions. On 8th November
2023, a protest by the group Just Stop Oil unexpectedly disrupted
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Figure 1: A still from an animation demonstrating the use of cluster centre points to summarise traffic congestion, overlaid on individual
bus trajectories (in orange). Each cluster is visualised using vizent glyphs introduced in [HcF∗24], plotted at the geographic centre of
each cluster. An animated version is provided in supplementary materials. Combining trajectories with cluster points is a useful validation
exercise, but adds visual clutter that may be undesirable in control room settings.

traffic on Waterloo bridge, preventing any traffic from passing for
over an hour [Jus23]. The 11th November 2023 was also a day of
significant disruption to ordinary road traffic within central Lon-
don. Remembrance Day commemorations at London’s Cenotaph
took place, shutting roads that buses would ordinarily travel along.
In addition, a large demonstration relating to the conflict in Pales-
tine with a reported 300,000 participants took place in central Lon-
don, closing roads and potentially inducing congestion on diversion
routes. This protest also attracted a small counter-demonstration,
which may have additionally caused traffic disruption [Al 23].

This paper makes two important contributions. First, we imple-
ment two alternative specifications for our clustering algorithm.
Since the DBSCAN algorithm depends crucially on an appropri-
ate method for identifying neighbouring observations, we consider
whether street network distances provide ‘better’ clusters than Eu-
clidean distances between observations. Second, we present a novel
evaluation procedure for the identified clusters that enables us to
determine whether one approach is ‘better’ than the other. Our eval-
uation procedure is derived by considering the end goal of the visu-
alisation, which is to support decision-making in control room set-
tings. In addition to presenting novel visualisations of traffic con-
gestion that use bivariate glyphs to represent both the duration and
extent of a traffic congestion cluster, our work also contributes to

the visual analytics literature by exploring how the choice of data
processing algorithm influences resulting visualisations.

This article proceeds as follows. In Section 2, we provide an
overview of previous work to identify street network congestion,
with a focus on studies that use visual analytics to support opera-
tional decision-making. In Section 3, we provide details of our an-
alytical approach, including the clustering algorithm adopted, our
visualisation design, and the metrics used within our evaluation
procedure. In Section 4, we present the results of this procedure
and compare the performance of clusters generated via Euclidean
distance metrics with those generated using network distances. Fi-
nally, in Section 5, we conclude our study and discuss further op-
portunities for research.

2. Related work

Traffic congestion is a well-studied phenomena due to its impor-
tance in urban planning and transportation systems. Availability of
large scale city-wide traffic data, via GPS sensors [LYW∗17], au-
tomated traffic detectors (e.g. via inductive loops installed into the
road surface, [LKJ∗20]), and image processing (e.g. via automatic
number plate recognition, [CTBH13]), have resulted in a number of
data-driven studies of road congestion. In comparison to traffic de-
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tectors that monitor traffic from a static fixed point, the use of GPS
devices to monitor vehicle trajectories and to derive vehicle speeds
can provide more comprehensive spatial coverage within a dense
urban street network. Such approaches vary, but usually rely on
a relatively small number of ‘probe’ vehicles—typically vehicles
related to public transportation such as taxis or buses where GPS
traces are made available as open data—to provide data that can
serve as a proxy for all road users. The use of GPS data, however,
is not without its problems such as GPS signals failing in heavily
built-up areas or in tunnels. Nevertheless, GPS data can provide a
cheap and effective approach that does not rely on installing expen-
sive speed monitoring equipment [KCPL18].

From such data, estimates of road congestion are derived. One
approach focuses on partitioning the study area into individual road
segments across distinct time intervals. Within each time-interval
and for each road segment, the average speed of vehicles along
the segment is determined. When this average speed becomes low
in comparison to historical distributions, then a congestion event
has occurred. Such approaches, as used in [LYW∗17,LKJ∗20], are
well-suited to situations where data is plentiful along the street
segments of interest, for example from automated traffic detectors
which measure vehicle speed from a static fixed point. However,
as outlined in [YLCZ19] and [SWT∗21], average speeds of probe
vehicles may be reduced for reasons other than congestion, includ-
ing via temporary traffic signals, bus stops or common taxi pickup
areas, or via parking on the street in question.

Some recent approaches have instead adopted a density-based
approach to defining and measuring traffic congestion, in which
congestion is defined as areas with a high-density of slow-moving
vehicles [AAH∗11, SWT∗21]. Relying on multiple vehicles be-
ing in close proximity provides some safeguards against spurious
identification of congestion from a small number of probe vehi-
cles. Density-based clustering algorithms can be adjusted to in-
corporate network-based distances [YM04] and several recent ap-
proaches place an emphasis on the structure of the street network.
For example, in [ZXL∗22], the authors use the structure of the
street network to consider phenomenon such as bottlenecks. In
their clustering procedure, [SWT∗21] use network distance in ad-
dition to several other amendments including map-matching and
moving object orientation alignment to ensure the identified clus-
ters reflect the underlying dynamics as close as possible. Some
specific network-based clustering procedures have also been intro-
duced [ZHK18, WRLT19, NNB∗23], although these are not pre-
sented within a dynamic cluster (i.e. temporally-varying) context.

The design space that has been explored to date for visualising
traffic congestion is diverse [CGW15] but recent examples of vi-
sualising real-time traffic congestion favour network-based visual-
isation approaches (e.g. [KCPL18]), perhaps in part due to their
common use by commercial online traffic services such as Google
Maps (https://maps.google.com/) and Waze (https:
//www.waze.com/), although the latter of these uses icons to
indicate road closures, possible hazards, and roadworks that might
impact journey times.

Other approaches focus on providing congestion information in
real-time [AAF∗15,GSV∗18,YYC∗19], with the goal of informing
operators about the current state of congestion on the roads. Con-

siderations for real-time systems include the ability to perform data
processing and aggregation within short time-scales as well as pro-
viding a visualisation system that can respond quickly to changes.

3. Data and methods

3.1. UK Bus Open Data

Data is provided by the UK Department for Transport Bus Open
Data Service (BODS) [Dep], which provides vehicle location data
for buses in England, updated every 10 seconds (although the GPS
devices situated on each bus only update every 10 to 30 seconds
[Dep20]). Our study area is in Central London. In Greater Lon-
don as a whole, bus journeys are estimated to comprise over 20%
of road user journeys [Tra23], indicating the prominence of buses
on London’s street network. Despite the use of dedicated bus lanes,
and the requirement to frequently stop for short time periods, track-
ing bus speeds in near real-time can be indicative of broader con-
gestion and disruptions on the road network. However, it is im-
portant to recognise that bus routes do not travel on all available
roads; they are usually restricted to main arterial routes (i.e. A and
B roads).

Data is collected from the BODS API every 60 seconds, provid-
ing a snapshot of the latest bus locations. The data is loaded into
a Neo4j graph database (Neo4j Enterprise 5.15), using a schema
that updates journeys if a new observation is found in each snap-
shot of data. For this purpose, a journey is defined as the same
vehicle travelling on a single route on the same inbound or out-
bound direction. A graph database was chosen in order to im-
plement efficient graph-style calculations over the data, includ-
ing the calculation of network distances. A depiction of our data
model in graph format is shown in Figure 2. Observation data
comprises of geographic coordinates, a timestamp and a vehicle-
journey identifier. The average speed value between observations
is calculated. In total, there are 37.7 million observations, rep-
resenting 1.4 million vehicle-journeys, used in our analysis. Our
data model also includes a representation of the street network in
Central London. Data from Open Street Map (OSM, https://
www.openstreetmap.org/) is loaded into the Neo4j graph
database via the Python package OSMnx [Boe24].

3.2. Clustering procedure

Our clustering procedure is based on the DBSCAN algorithm
[EKSX96], which was chosen since it can identify clusters of arbi-
trary shape and can distinguish between samples that appear within
clusters and samples that are treated as noise. The ability to dis-
tinguish between clusters and noise is critical for our application,
ensuring that a slow moving or stationary vehicle is not necessarily
identified as being part of a cluster. Indeed, since buses stop fre-
quently at bus stops and intersections, sometimes for longer than
60 seconds, this is an important feature. Furthermore, our objective
in producing clusters as visual summaries of congestion is not to
highlight every slow-moving region of traffic flow but instead to
identify regions with problematic high densities that risk persisting
for some time or cascading into further clusters in other parts of the
street network. We do not incorporate the orientations of vehicles
within our study, as is done in [AAH∗11, SWT∗21]. This is due to
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Figure 2: A graph representation of the data model. Data com-
prises of geographic coordinates, represented by the points (xi,yi),
a timestamp ti, and a vehicle-journey identifier v. Ordered obser-
vations of the same vehicle-journey are linked within the database
and statistics computed on the links between observations, such
as speed s2, as indicated. The road network is represented in the
database as intersections linked by road segments, each with an
associated length l. When calculating network distances, the ob-
servations are matched to their closest intersection.

the orientation of vehicles potentially changing significantly within
the 60 seconds between observations, meaning accurate estimates
cannot be obtained. Central London is also a dense urban street
network where disruptions can quickly propagate via intersections
across different directions.

We define a congestion cluster as a group of slow-moving buses
that are near in both space and time. We introduce a parameter µs,
defined as the maximum speed for which a bus is considered to
be slow-moving. The data is then filtered so that we only consider
observations whose estimated speed (as derived from the previous
observation from that vehicle-journey) is less than µs. The DB-
SCAN model identifies clusters as areas of high density, in which
there are at least minPts within radius ϵ of at least one core point.
Core points within neighbourhoods of other core points are allo-
cated to the same cluster, and points within ϵ of all core points are
called border points and also allocated to the cluster. DBSCAN
can also be extended to handle clusters in both space and time
(e.g. [BK07]), leading to the required identification of two epsilon
parameters: ϵs in the spatial domain and ϵt in the temporal domain.
Neighbourhoods are then defined using both spatial and temporal
parameters as thresholds. That is, for an observation comprising
of a two-dimensional spatial location and a timestamp, given by
u = (ux,uy,ut), the neighbourhood of u is then defined as points v
such that

N (u) = {v|ds(ux,uy,vx,vy)< ϵs ∧dt(ut ,vt)< ϵt} . (1)

In total, there is the choice of two distance functions, ds and dt ,
and four parameters, µs, minPts, ϵs and ϵt , in the implementation
of our clustering algorithm. For dt , we use the absolute difference
between the two timestamps, measured in seconds. For ds, we con-
sider two alternative specifications:

1. Euclidean distance, dE , implemented by projecting GPS latitude
and longitude coordinates to a projected coordinate system and
then computing Euclidean distances between projected coordi-
nates. Euclidean distance metrics are often used as default met-
rics in spatial clustering (for example, as in the DBSCAN im-
plementation of the popular scikit-learn library) and we use this
metric as our baseline. An alternative baseline is to use great cir-
cle distance, however the maximum possible difference between
the two approaches within our study area within central London
is less than 1.5m (while differences between actual distances
computed between observations will be much less), so these ap-
proaches are considered equivalent for the present study.

2. Network distance, dN , where for points u and v,

dN(u,v) = dE(u,n1)+ d̂N(n1,n2)+dE(n2,v), (2)

where n1 is the location of a node on the street network closest to
point u, n2 is the location of a node on the street network closest
to point v, and d̂N is the network distance between two nodes as
obtained from Dijkstra’s algorithm, implemented in our study
using Neo4j’s Graph Data Science Library. Two separate ver-
sions of the street network are utilised: a simplified network and
a full network. The simplified network reduces the number of
nodes and edges by removing all nodes obtained from OSM
that are neither an intersection nor a dead-end. The full network
contains all available nodes and has the effect of potentially re-
ducing the values of dE within equation 2.

Figure 3: Histogram of speed values, as calculated via linked
space-time observations within vehicle-journeys. µs = 0.3ms−1 is
selected as a point distinguishing two regimes of behaviour.

We set µs = 0.3ms−1, which was derived by observing an min-
imum in a histogram of observations at this point (see Figure 3),
suggesting two distinct regimes of behaviour. We then fix parame-
ters ϵt and minPts using our knowledge on the constraints associ-
ated with the data generating process. Since we have observations
of buses every minute, we wish to ensure that ϵt is large enough
to detect multiple observations of the same bus. In the case of de-
tecting congestion, repeated observations of a single vehicle can be
used to our advantage since if it is in close spatial proximity to its
previous observations, then there is an increased chance that a con-
gestion event has occurred. On the other hand, we wish to ensure
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ϵt is not so large that a single vehicle with multiple repeated ob-
servations could generate its own congestion cluster. To do this, we
set ϵt = 300 and minPts = 10. This choice ensures that at least one
observation requires at least 9 samples within its neighbourhood
before a cluster can be formed. With ϵt = 300, only a maximum
of 4 other observations from the same vehicle in the same neigh-
bourhood are possible and we therefore require a further 5 samples
in spatio-temporal proximity before a cluster can be formed, which
must come from at least one other vehicle.

Our visual analytics system then interacts with the clustering
procedure via the following steps:

1. For the study area at time T , for the period [T −δT,T ), identify
all observations within the database that travelled at a speed less
than µs and record their positions, times, and vehicle identifiers.

2. Implement DBSCAN on the resulting data, with ϵs and ϵt as
neighbourhood thresholds in the spatial and temporal dimen-
sions, and minPts as the minimum number of observations
within a neighbourhood for a new cluster to be formed.

3. For each cluster identified, calculate its geographic centre point
based on the spatial positions of all observations included in
the cluster. Identify the start and end times of each cluster by
the recorded position times of the first and last observations
included in the cluster and count the number of distinct vehi-
cles represented in the cluster. Return the cluster duration and
the number of distinct vehicles to be plotted using the bivariate
vizent glyphs.

Our implementation makes use of scalable cluster analysis tech-
niques [PFV∗12]. This method discretises the temporal dimension
of the study area into a series of frames and performs clustering
within each frame. The construction of the frames includes suffi-
cient overlaps such that clusters appearing in consecutive frames
can be matched on the basis that they would have been in the same
cluster had the clustering procedure been run on the full data. This
implementation has two consequences. First, it means our algo-
rithm is capable of running over long time periods, with relatively
small compute requirements. Second, it makes the implementation
on historical data parallelisable. A similar approach to splitting
up the study area (although this time in the spatial dimension) is
adopted in [YYC∗19] to provide real-time clustering. From an op-
erational perspective, this approach means that small batches can
be incorporated into the clustering procedure as soon as the data
becomes available for the next frame, making the clustering pos-
sible in near real-time. We discuss this as a possible extension in
Section 5.

3.3. Visualisation

Due to extensive overlapping and intersections, visual summaries
of high volume trajectory data are necessary to understand move-
ment patterns [AA11]. Moreover, reducing visual clutter can also
reduce the cognitive load on the viewer. Our visualisation design
seeks to achieve this by highlighting geographic areas of con-
gestion using the geographic centre points of identified clusters.
An example is shown in Figure 4, where the temporal evolu-
tion of the congestion is depicted using small multiples of a ge-
ographic area of interest. In particular, our visualisation design

plots cluster centres (taken as the mean location of points mak-
ing up the cluster) in geographic space as bivariate visual entropy
glyphs [HcF∗24]. The use of these glyphs allows us to incorpo-
rate two channels of information for each cluster, without need-
ing to increase the glyph size, which would lead to excess oc-
clusion. Experimental work described in [HcF∗24] suggests that
these glyphs can be used for fast ordering of the secondary shape
channel. Within the central disc of each glyph, we encode with
colour the duration of the cluster, which indicates to a viewer
how long the cluster has persisted. Within the outer part of glyph,
we encode via the shape frequency an indication of the number
of unique vehicles forming each cluster. The associated vizent
Python library [MB23] is used to generate these glyphs overlaid
on map tiles provided by Mapbox (https://www.mapbox.
com/about/maps/) using data from OpenStreetMap (http:
//www.openstreetmap.org/copyright).

3.4. Performance Metrics

Measuring the performance of clustering procedures in the context
of traffic congestion is not trivial since there is no ground truth: the
spatial and temporal extents of congestion do not admit precise def-
initions. This difficulty is reflected in the different approaches taken
in previous work to evaluate clustering procedures. One approach
is to measure cluster coherency, using statistics such as the silhou-
ette score [WRLT19] or the Davies-Bouldin index [NNB∗23]. Such
measures require computing a single value of distance between ev-
ery pair of observations. However, such a pairwise distance cal-
culation was not required in the implementation of our DBSCAN
clustering algorithm. This is because spatial and temporal distances
were computed separately and used in a sequential manner, com-
paring the resulting distances to ϵs and ϵt respectively to define
neighbourhoods. For statistics that require a single distance metric,
a weighting between the spatial (measured in metres) and tempo-
ral (measured in seconds) distances used in our clustering proce-
dure would be necessary, which is difficult to determine. Other ap-
proaches to cluster validation include comparison with aggregate
data on traffic speeds [CLLK17], alternative algorithm specifica-
tions [YLCZ19], and through the use of simulated data [SWT∗21].
To achieve our goal of evaluating clustering procedures for their
use in control room settings, and their ability to faithfully reflect
the real congestion situations on the road network, we opt against
using simulated and/or aggregated data. Similarly, comparing our
proposed procedure with the performance of an alternative algo-
rithm gives a biased view in the context of the chosen algorithm
with which to compare. For this reason, we propose a novel evalu-
ation procedure, which we explain in what follows.

To ensure our performance metrics relate to our operational chal-
lenge of providing visual summaries of traffic congestion in a con-
trol room setting, we develop three performance measures for our
clustering procedure. Our first measure, which we term cluster pu-
rity, is derived as the proportion of all observations in proximity to a
cluster centre that are also slow-moving during the cluster lifespan.
That is, for a cluster with centre point c = (cx,cy) which is active
from tmin to tmax, we first obtain the set D defined as observations
o = (ox,oy,ot ,os) such that:

D = {x|ds(cx,cy,ox,oy)< ν∧ tmin ≤ ot ≤ tmax} , (3)
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Figure 4: A series of small multiple images, showing the evolution of a set of congestion clusters over time. The cluster centre points are
plotted using vizent glyphs described in [HcF∗24]. To mitigate against occlusion, the clusters with the largest number of unique vehicles are
plotted on top of small clusters.

where o = (ox,oy,ot ,os) represents an observation from the BODS
database at spatial position ox, oy, at time ot , travelling at speed
os. The set D comprises all observations in proximity to the cluster
centre prior to filtering on speed with µs, which was the first step
of the clustering algorithm described in Section 3.2. Then, cluster
purity is defined as:

CP =
||o ∈ D|os < µs||

||D|| . (4)

The value in equation 4 gives the proportion of all observations in
close proximity to the cluster (defined by the set D) that are slow-
moving. Cluster purity operates as an effective evaluation metric
because it incorporates the data that was filtered and therefore ex-
cluded from the first step of the clustering procedure. It can be in-
terpreted as a measure of epistemic uncertainty since it captures the
extent to which clusters are genuinely measuring congestion. That
is, values of CP close to one indicate that the majority of observa-
tions in proximity to the cluster were also slow-moving, and were
therefore likely affected by the congestion. On the other hand, val-
ues of cluster purity close to zero indicate that a majority of traffic
was still moving freely, despite a congestion cluster having been
identified. Higher values of cluster purity indicate a true blockage
or congestion event where limited traffic can travel freely. For the
purposes of the present study, we select a value of ν as 200m. While
smaller values of ν will likely lead to high values of cluster purity,

this value was chosen to ensure a sufficient number of observations
were included in each cluster purity calculation.

Our second and third evaluation measures are designed to com-
pare what would be observed in a control room setting (where fu-
ture information on the evolution of the clusters is unknown) with
a ground truth version that contains all relevant future data. To do
this, we run a clustering procedure for every 15-minute interval in
the study period. That is, at time T , we use BODS data for the pe-
riod [T −δT,T ), where δT is chosen to be 2 hours, a value selected
since it is larger than the maximum typical life-span of any clusters
identified. We call these viewing time procedures since they emu-
late what would have been viewed from within a control room. We
use as a ground truth the clustering applied over the full study pe-
riod. For each cluster identified within the viewing time procedures,
we perform a matching procedure, matching to ground truth clus-
ters that were present at the viewing time and whose centers were
within 50m of the viewing time procedure cluster center. Then, for
each matched cluster i, which is present in the ground truth for the
interval [t i

min, t
i
max], and for viewing time T such that t i

min ≤ T ≤ t i
max

we define

τi = t i
max −T, (5)

which is the duration in seconds between the viewing time T and
the maximum time for which the cluster persists into the future. We
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then take

τ(T ) = ∑
i

τi, (6)

for all clusters i that are matched at time T . τ(T ) represents the
overall lifespan of clusters following the identification of a cluster
in a control room. We call this value the post-view cluster dura-
tion, which is our second evaluation measure. Higher values indi-
cate that once clusters have been identified by the clustering pro-
cedure, they are likely to persist for longer. Clustering procedures
with higher post-view cluster duration values are more desirable in
a decision-making context because it means that decisions taken are
more likely to impact an ongoing congestion incident on the road. If
clusters do not persist for very long (corresponding to low values of
τ), then decisions might be taken when the congestion would have
soon cleared without any intervention, thereby potentially wasting
valuable resources.

Our third measure uses the same quasi-experimental setup by
matching clusters from viewing time procedures with a derived
ground truth. In this case, for each matched cluster, we identify the
number of distinct vehicles that join each cluster after it has been
identified. We add to this the number of vehicles that contribute to
congestion clusters in close spatial proximity (within 500m) within
the next 60 minutes to obtain a measure of the potential for wider
impact of an identified cluster. We call this measure the post-view
cluster vehicle count. This final measure is necessary because iden-
tified congestion clusters have the potential for cascading across
the network, producing additional congestion points at nearby lo-
cations in the near future. Higher values of the post-view cluster
vehicle count measure indicate that more vehicles are likely to be
impacted by each congestion cluster. From a decision-making per-
spective, decisions might be prioritised according to the expected
number of vehicles likely to be impacted.

4. Results

To select an appropriate value of ϵs for each distance metric, we re-
run the clustering procedure for different values of ϵs for the period
on 8th November 2023, between 06:30 and 13:00, during which
congestion occurred due to the Just Stop Oil protest on Waterloo
bridge. The average cluster purity was measured together with the
total number of clusters (Figure 5). Based on the largest increases in
cluster purity, while still retaining a significant number of clusters,
we selected ϵs = 25 for the Euclidean distance metric and ϵs = 50
for the network distance metric. These values are used in the re-
sults that follow. In this parameter selection task, we only included
simplified street networks, as described in Section 3.2.

Average cluster purity values for the different distance metrics
across the entire study period from 1st-14th November 2023 are
presented in Table 6, while a rolling average of cluster purity over
time is shown in Figure 7. An improvement in cluster purity when
using network distance metrics in comparison to Euclidean dis-
tances can be seen, equating to around a 6 to 9 percentage point in-
crease. Based on our definition of cluster purity, clusters identified
by the network distance metric are more likely to reflect genuine
congestion, in which a greater proportion of vehicles in proximity
to the cluster center are also impacted by the congestion. In other

Distance metric ϵs Cluster purity Cluster count
Euclidean 100 0.21 85
Euclidean 75 0.23 77
Euclidean 50 0.27 67
Euclidean 25 0.44 33
Euclidean 15 0.47 12

Network (simplified) 100 0.29 62
Network (simplified) 75 0.36 41
Network (simplified) 50 0.46 38
Network (simplified) 25 0.57 5
Network (simplified) 15 NA 0

Figure 5: Average cluster purity and cluster counts for 06:30 -
13:00 on 8th November 2023 for different values of ϵs.

words, the network distance metric produces clusters with less epis-
temic uncertainty. We also note that cluster purity increases when
using the full street network over the simplified version. In our ex-
periments, clustering over the two-week study period for the full
network took 52 minutes versus 21 minutes for the simplified net-
work using an Intel i7-12700H, with 64GB RAM. Clustering with
Euclidean distances took 32 minutes. It is interesting to note com-
parable computation speeds for network distances versus Euclidean
distances, although optimisations might be possible in both cases
(see Section 5). However, due to increased computation time, it
may not be feasible to use the full network in operational settings.
Nevertheless, the cluster purity results taken in isolation confirm
our hypothesis that a better clustering procedure can be obtained
with a more accurately defined distance metric.

Results for mean post-view cluster duration and mean post-view
cluster vehicle count are also presented in Table 6. For the sim-
plified network, we find that clusters derived using network dis-
tance are likely to persist for a further 69.9 seconds on average,
and lead to 2.22 additional vehicles being identified in a cluster
for the next 1-hour period. This can be compared to 57.8 seconds
duration and 1.68 vehicles for the Euclidean metric. For the full
network, these values increase 102.8 seconds for duration and to an
additional 3.05 vehicles. This suggests that clusters identified with
network distance metrics are more likely to involve a greater num-
ber of vehicles in the short term, meaning that any actions taken as
a result of identifying these clusters from within a control room are
likely to have a larger impact. A time series version of these met-
rics is also presented in Figure 8. A similar pattern is observed for
both Euclidean and Network distances, with few clusters identified
overnight during the study period. However, with a small number
of possible exceptions, we see larger values on average in the net-
work metric than the Euclidean metric (as evidenced by the values
in Table 6), emphasising a consistent improvement in the use of
network metrics over this time period.

5. Conclusion and discussion

We have presented a visual analytics approach to summarising city-
wide road traffic congestion via space-time clusters, with the goal
of providing a near real-time understanding of traffic conditions for
situations such as a control room. We have compared Euclidean dis-
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Distance metric Cluster
count

Cluster du-
ration (s)

Vehicles
per cluster

Cluster purity
(%)

Post-view
duration

Post-view 1-hour nearby
vehicle congestion count

Euclidean 25m 503 672 8.43 33.0 57.8 1.68
Network 50m, simplified 536 686 8.04 39.1 69.9 2.22
Network 50m, full network 846 668 7.86 42.5 102.8 3.05

Figure 6: Table of summary statistics and average evaluation metrics, taken every 15 minutes for the period 1-14 November 2023.

Figure 7: A 24-hour rolling average of cluster purity over the du-
ration of the study period (1-14 November 2023) for the three dis-
tance metrics in Table 6.

Figure 8: A time series of post-view metrics used to assess net-
work and Euclidean distances. Top: Lifespan of clusters following
control room identification. Bottom: Count of vehicles in clusters
within 500m of the identified cluster within the next hour.

tance with network distance and shown that network distances pro-
vide advantages by generating clusters with higher values of cluster
purity, a performance metric designed to capture the severity of an
identified cluster and its associated epistemic uncertainty. Our re-
sults also show that clusters generated using network distance met-
rics are more likely to generate clusters that last longer and which
impact more vehicles, which, we argue, is beneficial for control
room operators who will not wish to invest time and resources be-
ing alerted to incidents that are more likely to be resolved sooner.
Indeed, a course of action available to a decision-maker in a control
room should be executed during the lifespan of an incident, which,
as our results show, is more likely to occur with network distances.

Network distance metrics are more likely to accurately reflect the
underlying dynamics on the street network within which vehicles
are constrained. This, we argue, explains our findings. It is impor-
tant to recognise that in some cases congestion events can propa-
gate through the network. We believe that network distance metrics
can more accurately capture such propagation, and hence are bet-
ter for identifying traffic congestion. Our findings have important
implications for traffic planners and developers of intelligent trans-
portation and traffic control room systems.

Extensions to this work can be explored in multiple directions.
First, the Bus Open Data Service is not only available in Cen-
tral London but also across England. More cities and governments
are also increasing the amount of open transport data published. It
would be of interest to compare distance metrics across different
geographic settings with qualitatively different street networks and
bus service schedules to validate the universality of our findings.
Second, our evaluation procedure would be well-suited to compar-
ing a broader range of clustering algorithms and we have high-
lighted several alternative clustering procedures, some of which
could be extended to either a network distance setting, or to a space-
time clustering setting. Third, additional steps can be taken to anal-
yse and optimise the performance of our methods with a view to
minimising the delay in providing congestion clusters for decision-
making. One approach might be via real-time monitoring proce-
dures (e.g. [AAF∗15]). In our implementation, the use of Dijkstra’s
algorithm had a similar computation time to a Euclidean distance
metric, but it may be possible to optimise further, for example via
the approach of [ZHK18]. Finally, future work might address the
visualisation challenges in control room settings via assessment of
our visual design and encoding. Consideration of alternative vari-
ables for congestion clusters that are less likely to be as correlated
as the variables we have selected might further validate our visual
design.
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