
EG UK Computer Graphics & Visual Computing (2024)
A. Slingsby and D. Hunter (Editors)

Serial Gaussian-Blue-Noise Stippling

Abdalla G. M. Ahmed †

Khartoum, Sudan

(a) Input Image (b) GPU: 205 / 2,839 s (c) CPU (ours): 121 / 311 s (d) Our reconstruction

Figure 1: Stippling of the input image in (a) using (b) the original GPU-based GBN algorithm of Ahmed et al. [ARW22] and (c) our CPU-
based modified algorithm, both using 10K points and 10K iterations, comparing the quality and consumed time in seconds for float/double
precision, respectively. In (d) we see a reconstruction of the image from the points in (c).

Abstract
We adapt the adaptive Gaussian Blue Noise (GBN) algorithm to iterate serially over the points, one by one, thus enabling
its implementation on CPU. Towards that end, we propose an alternative kernel shaping model. Our implementation model is
simpler and has a linear time complexity, replacing the quadratic complexity of the original model.

1. Introduction

Stippling is a black-and-white reproduction technique for gray-
scale images. Unlike its close relative, halftoning, that uses a low-
resolution grid of pixels, stippling allows arbitrary placement of the
small dots, usually disc-shaped, that constitute the image, resulting
in a far higher quality for the same count of picture elements.

Computer-generated stippling was introduced by Deussen et al.
[DHVOS00] to imitate hand-crafted stipplings in artworks and il-
lustrations. Many algorithms have been proposed since then. The
Gaussian Blue Noise (GBN) algorithm of Ahmed et al. [ARW22]

† abdalla_gafar@hotmail.com

represents the current state of the art. Figure 1(b, c) demonstrates
GBN stippling, along with a reconstructed image in (d). It offers a
tone-reproduction quality comparable to the original grayscale in-
put image for the same information bit budget. For example, the
shown stipplings use only 62% of information bits compared to
the input image resolution, and reproduce almost an identical im-
age at a distant view. Noting the disjointedness and well-spacing
of the stipple points, along with this visual reproduction quality,
Ahmed [Ahm23] re-introduced stippling as an image encoding
technique that is well-suited for printing/engraving grayscale im-
ages on different non-electronic media, including stones, leather,
and wood, among others demonstrated in his poster.

The adaptive GBN algorithm presented by Ahmed et

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/cgvc.20241226 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-2348-6897
https://doi.org/10.2312/cgvc.20241226


2 of 3 Ahmed / Serial Gaussian-Blue-Noise Stippling

al. [ARW22] is inherently parallel, updating all the points simul-
taneously in each iteration. While parallelization is usually taken
as a pro, lack of serialization may arguably be considered a limit-
ing factor of GBN, preventing its portability to CPU-only devices.
In this paper, we present our serial-based implementation of GBN.
To achieve that goal, we developed an alternative kernel-shaping
algorithm that supports serial computation.

2. Background

In uniform GBN optimization, a Gaussian kernel

g(x) = e−
∥x−xi∥2

2σ2 (1)

is placed on each sample point, and the placement of the points is
optimized so that the sum of the Gaussians is smooth and uniform
all over the domain. For the adaptive case used in stippling, the idea
is similar, but static negative kernels are placed on the pixels of the
given density map, and the goal is to make the absolute sum of the
pixel and sample point kernels close to zero all over the domain.
There is, however, an important difference introduced in this case,
adopting from Fattal [Fat11], that the kernels are shaped

g(x) = ae−
a∥x−xi∥2

2σ2 (2)

in accordance with the local density to cope with the effective lo-
cal spatial frequency content, making them narrower and taller in
darker parts containing more samples, and shorter and flatter in
lighter parts with fewer samples. This calls for an algorithm to com-
pute the shaping factor a for each kernel. Ahmed et al. [ARW22]
use the logic in Algorithm 1. The intuition is to make each kernel
maintain the same 1 : 2πσ

2 peak-to-sum ratio as found in uniform
distribution. We note, however, that this calls for an iterative pro-
cess to recompute each kernel in accordance with the updated in-
formation of the others. This process is concealed in the authors’
code by interleaving it with the gradient-descent location updating
logic that computes the optimal placement of the points. The other
concern is that this process might diverge, flattening all kernels, as
we have actually observed a few times. This is solved by including
the normalization at the end of Algorithm 1 to force all the kernels
to stay within a nominal shape. It is this normalization that dictates
parallelization in their original code, since all the relative peak-to-
sum ratios must be available, and changing the shaping factor of
any point affects all the other points.

3. Our Treatment

The first and most significant modification we introduce is a dif-
ferent algorithm for computing the shaping factors: we shape each
kernel σ proportional to the nearest neighbor as summarized in Al-
gorithm 2 Not only has the logic become far simpler, but we find
that our modified model is far more intuitive. The key idea is that
the nearest neighbor readily gives an estimate of the area covered
by the point, and the kernel width simply expands or shrinks ac-
cordingly — while maintaining the same mass as suggested by Fat-
tal [Fat11].

Algorithm 1: Original kernel shaping algorithm in GBN,
reproduced from Ahmed et al. [ARW22].

Input : A nominal kernel width σ and list {xk}N
k=1 of

kernel centers.
Output: An optimized list {ak}N

k=1 of kernel amplitudes.
1 Initialize all amplitudes assuming a uniform density:

ak← 1;
2 for I-iterations do
3 Compute accumulated density at each point:

dk = ∑l ̸=k al exp
(
−al

∥xk−xl∥2

2σ2

)
;

4 Set all amplitudes to respective densities: ak = dk;
5 Normalize {ak} so that they average to 1;

Algorithm 2: Our alternative kernel shaping algorithm.

Input : A nominal kernel width σ and list {xk}N
k=1 of

kernel centers.
Output: An optimized list {ak}N

k=1 of kernel amplitudes.
1 Compute nominal area per point u← “domain area” /

“number of points”;
2 foreach point pi do
3 Find distance di to nearest neighbor point;
4 Set ai = u/d2

i ;

3.1. Our Implementation

We tested this logic empirically, and it produced very similar results
to the original algorithm, indicating the success of our model, and
opening the door for our serial implementation. Algorithm 3 shows
the main steps of our implementation.

Algorithm 3: Our serial implementation.
Input : 1, A density map

2. An initial list {xk}N
k=1 of point locations.

Output: An optimized list of point locations in accordance
with the density map.

1 Initialize a list a of shaping factors using Algorithm 2;
2 Initialize a list b of nearest neighbors of each point;
3 for I-iterations do
4 foreach point pi do
5 compute a new location as per adaptive GBN

optimization [ARW22], and move the point;
6 Find the new nearest point of pi, and update ai and

possibly bi if changed;
7 Find if the moved point pi has come closer to

another point p j than its nearest neighbor, and
update a j for that point;

8 Find if pi was the nearest neighbor to another point
p j and moved away, then search for nearest
neighbor of p j and update a j and b j;

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



Ahmed / Serial Gaussian-Blue-Noise Stippling 3 of 3

3.2. Data Structures

We maintain a list of neighbors within the effective neighborhood
of each point, beyond which the Gaussian tail is negligible, as de-
cided by machine precision. Note that the mutual kernel shape be-
tween two points is the average of their kernel shapes; hence, a
narrow kernel may interact with a very distant wider kernel. We
maintain a simple array structure for this list and recompute the
whole list if any point moves more than half the distance to its ini-
tial nearest point. Such a full list update is needed only 28 times
in the 10K iterations of Figure 1(c), and the span between updates
increases as the points continue to slow down with iterations.

Through this idea, we managed to confine the quadratic time
complexity to the list updating, reducing the core algorithm to a
linear time complexity, where a point typically maintains an aver-
age of 60/90 neighbors for float/double real point coordinates, re-
spectively. The advantage of this list becomes more profound if we
note that the list has to be iterated twice per point, once to compute
the new location, and then to update the nearest neighbors and the
associated shaping factors. At a cost of extra coding complexity, it
is possible to maintain two lists, since the nearest neighbors stay
within the first ring of Voronoi neighbors, and do not extend to 6 or
9 sigma as needed in position optimization.

4. Results

Here, we briefly discuss different aspects of our implementation.

4.1. Quality

We have not seen any noticeable quality difference compared to the
latest code of Ahmed [Ahm23], cf. Figure 1(b, c), nor between the
CPU and GPU implementation of our variant.

4.2. Speed

Comparing timing between CPU and GPU is rather tricky, since
there are many parameters and models. For an abstract compari-
son of time complexity, our implementation maintains linear time
complexity for the core computation, as mentioned above, and
quadratic complexity for the less-frequent list updates, in contrast
to the quadratic complexity throughout the GPU implementation.
The numbers beneath Figure 1(b, c) show typical real-time perfor-
mance on the same machine, namely a contemporary laptop with an
Intel Core i7-10510U CPU and an NVIDIA GeForce MX250 GPU
with 384 cores. Notably, the CPU implementation utilizes only one
of the 8 available cores in this machine, which suggests that our
implementation is possibly more economical for patch processing
and/or low-end resources.

4.3. Memory

The space complexity of our implementation is linear in the number
of points and is negligible for typical numbers of stippling points,
especially since it is CPU-based.

4.4. Precision

One interesting observation is that double precision computation
on GPU is significantly more costly than on CPU, as can be seen
in Figure 1(b, c). Thus, our implementation enables feasible dou-
ble precision computation, which becomes more significant as the
number of points increases. We observed an improvement in qual-
ity with double precision computations compared to float, though
at the cost of longer processing time.

4.5. Reconstruction

As with the original GBN, the kernel shaping algorithm is readily
adaptable to a reconstruction algorithm. Our modified model offers
a simpler, faster, and more stable reconstruction algorithm, since
the shaping of each kernel can be computed independently of the
other shaping factors. Figure 1(d) shows an example reconstruction
of an image from the sample points in (c).

4.6. Coding Complexity

Our serial implementation is admittedly lengthier and more code-
complex than the reference GPU implementation, as we have to
maintain a few auxiliary tables. Increased coding complexity natu-
rally leads to a higher likelihood of mistakes, and we actually spent
considerable time using the incomplete algorithm before realizing
the missing final step in Algorithm 3. Therefore, we have included
our documented code in the supplementary materials to save read-
ers time and help them avoid similar errors. In addition to the details
discussed here, the code includes other documented facilities for
initializing the point distributions, exporting the output, and video-
recording the optimization process by pipelining to FFMPEG, for
example.

On the positive side, our implementation model is more flexible
and offers trade-offs between coding complexity and speed. Addi-
tionally, it may serve as valuable training material for students.

5. Conclusion

Through a different intuition of kernel shaping logic, we managed
to make GBN stippling ready for serial CPU implementation, and
we developed an actual optimized implementation that should help
increase the accessibility of GBN-quality stippling, making it avail-
able to more low-cost computers and mobile devices.

References
[Ahm23] AHMED A. G. M.: Image printing on stones, wood, and more.

In ACM SIGGRAPH 2023 Posters (2023), SIGGRAPH ’23, ACM. doi:
10.1145/3588028.3603686. 1, 3

[ARW22] AHMED A. G. M., REN J., WONKA P.: Gaussian Blue Noise.
ACM Trans. Graph. 41, 6 (Nov. 2022). URL: https://doi.org/
10.1145/3550454.3555519. 1, 2

[DHVOS00] DEUSSEN O., HILLER S., VAN OVERVELD C.,
STROTHOTTE T.: Floating Points: A Method for Comput-
ing Stipple Drawings. Computer Graphics Forum (2000).
doi:10.1111/1467-8659.00396. 1

[Fat11] FATTAL R.: Blue-noise point sampling using kernel density
model. ACM Trans. Graph. 30, 4 (2011). doi:10.1145/2010324.
1964943. 2

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10.1145/3588028.3603686
https://doi.org/10.1145/3588028.3603686
https://doi.org/10.1145/3550454.3555519
https://doi.org/10.1145/3550454.3555519
https://doi.org/10.1111/1467-8659.00396
https://doi.org/10.1145/2010324.1964943
https://doi.org/10.1145/2010324.1964943

