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Abstract

This proposal outlines a novel view synthesis pipeline designed for road reconstruction in autonomous driving scenarios that
leverages virtual camera technology to synthesise images from unvisited camera poses, thereby enhancing and expanding cur-
rent datasets. It consists of three main steps: data acquisition, data preprocessing and fusion, and then importantly interacting
with new 3D view synthesis with geometric priors. The modular design allows each component to be independently optimised
and upgraded, ensuring flexibility and adaptability to various datasets and task requirements. The proposed approach aims to
improve the robustness, realism, and photometric consistency of novel view synthesis, effectively handling dynamic scenes and
varying lighting conditions. Additionally, this research plans to open-source a low-cost stereo camera hardware solution with
the included software implementation.

CCS Concepts
• Computing methodologies → Reconstruction; 3D imaging; Computational photography;

1. Introduction

The rapid development of autonomous vehicles has imposed higher
demands on safety and ride comfort. Road feedback is a critical
factor in the interaction between vehicles and the physical environ-
ment, directly affecting vehicle performance and comfort. Tradi-
tional vehicle navigation systems primarily rely on static maps and
road construction records for road surface information [BHLL23].
However, these data sources often lack precision, failing to cap-
ture critical details such as minor road damage, complex gradi-
ent changes, or hidden obstacles [GUGK17]. These deficiencies
limit the precision of autonomous vehicles’ decision-making and
dynamic planning capabilities, potentially hindering their ability to
effectively respond to sudden situations and complex road condi-
tions, thereby impacting overall driving safety and ride comfort.

Significant progress has been made in research utilising stereo
cameras, LiDAR, and radar sensors to collect road surface data
[GLSU13, CBL∗20, COR∗16]. These sensors can provide high-
precision road data, enabling accurate reconstruction of road ge-
ometry. However, several key issues persist with these methods.
Firstly, existing data primarily relies on fixed-position onboard
cameras, making it difficult to capture road details from differ-
ent perspectives, resulting in inconsistent performance of the same
perception algorithm across different vehicles, thereby affecting
the overall performance of autonomous systems [DTP21]. Sec-
ondly, repeated data collection with various sensor configurations is

costly, making it impractical for real-world applications [PNC∗22].
Additionally, ensuring data consistency under varying temporal and
spatial conditions poses a significant challenge.

Figure 1: This diagram illustrates the process of generating im-
age data using virtual cameras combined with novel view synthe-
sis. The diagram is divided into two sections: real images (yellow
car) and virtual synthesised images (blue car). Real images are
obtained from real-world data collection, while the synthesised im-
ages are collected by positioning virtual cameras at different poses
within a 3D scene. Source of 3D models: [pol]

To overcome these issues, several studies propose using vir-
tual cameras combined with multi-view stereo (MVS) technology
to capture new viewpoint image data (see Figure 1) [YLL∗20,
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LHH16]. Although these methods have made significant progress
in geometric reconstruction, they still exhibit noticeable deficien-
cies in texture realism and lighting consistency. With the advent
of Novel View Synthesis (NVS) methods such as Neural Radiance
Fields (NeRF) [MST∗21] and Gaussian Splatting (GS) [KKLD23],
these problems have been greatly alleviated. These methods simu-
late light radiance fields and three-dimensional Gaussian distribu-
tions, enabling high-fidelity reproduction of complex colour tex-
tures and lighting scenes, generating realistic new viewpoint im-
ages and demonstrating significant potential. Nevertheless, apply-
ing these methods to autonomous driving datasets remains a chal-
lenging task. Due to the outward-facing data capture approach used
in autonomous driving, these datasets typically feature large-scale
scenes with low image overlap rates [XZL∗22]. This presents sig-
nificant challenges in achieving the high level of detail and consis-
tency required for accurate and reliable novel view synthesis.

In this paper, we propose a design scheme for new viewpoint
generalisation and scene reconstruction processes for autonomous
driving data. This process aims to improve the precision and ro-
bustness of raw data by optimising the integration of multimodal
autonomous driving data. By combining stereo vision, Structure
from Motion, and Novel View Synthesis, we aim to achieve accu-
rate reconstruction of autonomous driving road scenes. Our goal is
to enhance geometric and photometric consistency of synthesised
new viewpoints, accurately estimate camera poses, and reduce arti-
facts and blurring issues in the scene. Although this scheme is still
in the design phase, we believe it offers new insights and direc-
tions for addressing the precision issues of existing systems. The
designed process includes the following key steps:

• Stereo Image Enhancement: Adopting modular stereo image
enhancement algorithms to improve the visual quality and clar-
ity of stereo images, addressing the degradation caused by envi-
ronmental factors, motion blur, and lighting variations.

• Stereo-Integrated Structure from Motion: Making use of the
constant relative pose of stereo cameras to provide pose priors
and optimise SfM parameters, enhancing accuracy of pose esti-
mation while improving reconstruction precision.

• Multi-model Depth Completion: Utilise multi-modal data pro-
cessed from autonomous driving datasets for depth completion
to incorporate complementary information and enhance the ro-
bustness and accuracy of the final depth maps.

• Novel View Synthesis: Generation of high-fidelity novel views
using NeRF with multi-criteria supervision.

Additionally, we have developed a low-cost, open-source solu-
tion for building stereo camera systems. This solution can assist
researchers and developers in easily constructing and deploying
stereo camera setups.

2. Related Work

Our work introduces a new pipeline for NVS in road surface recon-
struction datasets. This pipeline incorporates key techniques such
as stereo image enhancement, SfM, and NVS. The following sec-
tion provides a review of the related research in these areas.

2.1. Stereo Image Enhancement

The high dynamics and complexity of autonomous driving sce-
narios present various challenges, such as motion blur, insufficient
resolution of distant objects, and inadequate ambient lighting dur-
ing image capture. To address these issues, stereo image enhance-
ment techniques are widely applied at the image preprocessing
stage to improve image quality. Common techniques include stereo
deblurring [ZZZ∗19], low-light enhancement [HFX∗22], dehaz-
ing [NPX∗21], and super-resolution [CCY22]. These techniques
are crucial in 3D reconstruction and novel view synthesis, as they
significantly improve geometric reconstruction accuracy and en-
sure the consistency and richness of scene details by restoring high-
quality scene information.

2.2. Structure From Motion

Structure from Motion (SfM), as a method for estimating spatial
geometric information and camera motion from a collection of
multi-view images, is widely applied in 3D reconstruction, MVS,
and NVS tasks. The primary steps involved in SfM include feature
point detection and matching, camera pose estimation, sparse re-
construction, and bundle adjustment [SF16]. In the 3D point cloud
reconstruction phase, the structure of objects is recreated using tri-
angulation based on camera poses and feature point positions. Bun-
dle adjustment is a global optimisation process that further refines
camera poses and 3D point locations by minimising the reprojec-
tion error. Incremental SfM, known for its robustness and scalabil-
ity, is the most commonly used approach and has led to the devel-
opment of notable SfM algorithms such as Bundler [Sna08], Vi-
sualSfM [W∗11], and COLMAP [SF16]. In the pipeline of NVS,
COLMAP has established itself as a standard step due to its ad-
vanced performance. For autonomous driving datasets, the conti-
nuity of image sequences allows incremental SfM to better exploit
adjacent frame information, gradually accumulating and refining
3D reconstruction results, thereby enhancing the accuracy.

2.3. Novel View Synthesis With Depth Prior

NVS technology generates images or videos from previously un-
seen viewpoints based on existing ones. Early NVS methods, such
as Local Light Field Fusion (LLFF) [MSOC∗19] and Scene Repre-
sentation Networks (SRN) [SZW19], have demonstrated a certain
degree of ability to generalise perspectives by leveraging multi-
ple views of the same scene. However, these approaches encounter
significant challenges in complex lighting and reflective environ-
ments. Advanced techniques like Neural Radiance Fields (NeRF)
[MST∗21] and Gaussian Splatting (GS) [KKLD23] have markedly
enhanced the fidelity of generated images and improved perfor-
mance in complex lighting conditions. These advancements, how-
ever, depend on the availability of a substantial number of view-
points to support model training. Consequently, in scenarios with
sparse viewpoints, reconstructing 3D model geometry and photom-
etry becomes considerably more challenging.

To address this issue, several NeRF-based approaches incorpo-
rating depth priors have been proposed. DSNeRF [DLZR22] first
utilised sparse point cloud depth information from SfM to super-
vise light particle distribution. However, the data’s sparsity limits
model performance improvement. To overcome this, methods to
obtain dense depth information have been developed. Dense Depth
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Prior NeRF [RBM∗22] enhances sparse point cloud depth by in-
troducing depth completion and uncertainty techniques. MonoSDF
[YPN∗22] uses deep learning-based monocular depth estimation,
while StereoNeRF [LJBC24] employs stereo cameras for scene
depth estimation.

These methods, however, are mainly limited to indoor scenes.
Accurate depth estimation in outdoor environments is more chal-
lenging due to greater variations in lighting, weather conditions,
and dynamic elements, complicating visual-based depth estima-
tion. In this context, methods such as UrbanNeRF [RLS∗22] and
StreetNeRF [XZL∗22] give up traditional SfM pipelines in favour
of LiDAR-based processes to acquire sparse point cloud informa-
tion and estimate camera poses. These methods employ depth com-
pletion techniques to produce denser and more detailed depth maps.
While this approach yields more accurate global depth estimations,
it introduces a significant dependence on LiDAR data. This reliance
not only elevates data collection costs and computational complex-
ity but also limits the integration of multimodal data. For instance,
leveraging image texture information to derive prior knowledge of
scene geometry can alleviate inaccuracies in sparse depth comple-
tion, particularly in local regions where data may be lacking.

3. Aims and Objectives

This work aims to perform high-quality road surface 3D recon-
struction and novel view synthesis under varying scenarios with
sparse views. The objectives are as follows:

• Design a low-coupling novel view synthesis process by modu-
larising the algorithm steps, aiming to enhance the flexibility of
the pipeline and improve its applicability to various tasks and
datasets.

• Leverage the multimodal advantages of autonomous driving
datasets to jointly integrate and optimise existing data, thereby
improving the accuracy and efficiency of synthesis models.

• Improve existing novel view synthesis methods to enhance
model performance, focusing on increasing computational effi-
ciency, improving geometric reconstruction accuracy, and ensur-
ing photometric consistency of the generated images.

By achieving these objectives, our proposed pipeline, compared
to traditional ones, not only allows for modular and flexible adapta-
tion to different task scenarios but also effectively enhances model
accuracy and robustness through comprehensive integration of ex-
isting data and advanced novel view synthesis methods.

4. Pipeline Design

To address the challenges of novel view synthesis in autonomous
driving road reconstruction datasets, we propose a modular 3D re-
construction and novel view synthesis pipeline that can be flexi-
bly adjusted for different scenarios and data. As illustrated in Fig-
ure 2, our designed framework not only optimises the traditional
SfM workflow and fully integrates data, but also enhances model
performance using novel view synthesis techniques with geometric
priors, specifically NeRF. The entire process can be broadly divided
into three main components: data acquisition, data preprocessing
and fusion, and novel view synthesis with geometric priors. In this
section, we will provide a detailed introduction and justification for
the design principles of each component.

4.1. Data Acquisition

Due to the limited availability of road reconstruction datasets based
on autonomous driving [ZXD∗24], we have designed a low-cost,
open-source stereo vision device to facilitate data collection for
specific task scenarios and model performance testing [Github
Page]. Based on the Raspberry Pi platform, it benefits from the
extensive community support and flexible hardware expansion ca-
pabilities of the Raspberry Pi, enabling users to achieve efficient
stereo vision applications at a low cost. It is important to note that
the data acquisition phase is not mandatory, as this entire workflow
is fully applicable to existing general autonomous driving datasets.
To validate the effectiveness of the proposed pipeline, we con-
ducted preliminary experiments on both an autonomous driving-
based road reconstruction dataset and a dataset collected using our
custom-developed device. The experiments demonstrated that the
proposed pipeline can achieve the basic objectives for both types
of datasets (see Section 5).

4.2. Data Preprocessing and Fusion

The designed data preprocessing and fusion pipeline is primarily
divided into four main modules: a stereo synthesis-based image
enhancement module, an SfM-based sparse reconstruction mod-
ule, a stereo matching module, and a depth completion module.
Except for the final depth completion module, the other modules
can be flexibly replaced with alternative methods or modified with
additional sub-modules. This low-coupling, modular design allows
each module to be independently optimised and upgraded, thereby
adapting to different datasets and task requirements.

Given that stereo cameras have become standard equipment in
autonomous vehicles, stereo vision technology has been integrated
into the data preprocessing workflow. Due to the high dynamic
nature of autonomous driving scenarios, the quality of data col-
lected by image sensors is often compromised. To address this,
a stereo image enhancement module has been introduced to im-
prove the quality of raw images. This module utilises advanced
image processing techniques such as dehazing [NPX∗21], deblur-
ring [ZZZ∗19], and low light enhancement [HFX∗22] to improve
image clarity and detail fidelity, ensuring that subsequent process-
ing steps can operate on higher-quality data for analysis. Addition-
ally, the stereo matching module performs initial dense depth esti-
mation by utilising image disparity and texture information.

For the SfM-based sparse reconstruction process (such as using
COLMAP), road scenes sometimes lack effective reference fea-
tures, and road textures degrade with increasing distance, leading
to potential drift or instability in pose estimation. To mitigate this
issue, we plan to introduce rigid relative pose constraints from the
stereo cameras to optimise the camera pose estimation. Addition-
ally, we have adjusted and optimised the default parameters in the
COLMAP process based on the characteristics of autonomous driv-
ing scenarios to improve the convergence speed and accuracy of
sparse reconstruction.

The final step in data preprocessing and fusion is depth com-
pletion. Traditional depth completion methods often use only one
or two modalities of data as input. Our design, however, fully pro-
cesses existing data and extracts information from multiple modal-
ities, increasing the dimensionality of the guidance data for depth
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Figure 2: The proposed pipeline can be divided into three main stages: data acquisition, data preprocessing, and novel view synthesis.
First, data is collected using a stereo camera (this step can be skipped if using an existing dataset). During data preprocessing, image
quality is enhanced through stereo synthesis techniques. COLMAP is then used for SfM to estimate camera poses and generate sparse point
clouds, followed by coarse stereo matching and depth completion to create dense depth maps. In the novel view synthesis stage, camera pose
optimisation, colour supervision, photometric supervision, and geometric supervision are applied to improve 3D reconstruction accuracy
and photometric consistency. Finally, by inputting new camera poses, corresponding depth images and synthesised novel views are generated.

completion to three dimensions. These three-dimensional data in-
clude initial dense depth maps from stereo matching, texture-based
geometric contours from RGB images, and sparse point clouds
from 3D reconstruction. Utilising the modular nature of our work-
flow, the sparse point clouds can be replaced with LiDAR point
clouds as needed.

4.3. Novel View Synthesis with Geometric Prior

Due to the use of discrete 3D Gaussian points to represent scene
information, Gaussian splatting makes it challenging to accurately
supervise training results using dense depth information. In con-
trast, NeRF utilises ray sampling techniques, enabling geometric
supervision of image pixels based on the density distribution of
colour particles. Therefore, the NeRF are selected for preliminary
experiments in the pipeline. Based on the derivations in DSNeRF
[DLZR22], the depth estimation formula derived from the volumet-
ric rendering equation is as follows:

D̂(r) =
N

∑
i=1

witi, wi = T (ti)(1− exp(−σi∆ti)) (1)

where N is the total number of samples, ti is the position of the i-th
sample point, wi is the weight of each sample point and T (ti) is the
accumulated transmittance from the origin to ti.

Given that the dense depth information estimated in the previous
steps is derived from basic stereo matching and the fusion of sparse
point clouds, to handle local depth anomalies more robustly and

smoothly, the depth supervision will be based on the following Hu-
ber Loss formula. This formula combines the advantages of Mean
Squared Error (MSE) and Mean Absolute Error (MAE), providing
robustness while simplifying computations:

Lδ(z,zsensor) =

{
1
2 (z− zsensor)

2 for |z− zsensor| ≤ δ,

δ|z− zsensor|− 1
2 δ

2 otherwise.
(2)

where δ denotes the threshold at which the loss function transi-
tions between quadratic and linear loss. When the absolute error
between the predicted value z and the sensor measurement zsensor
is less than or equal to δ, the loss function uses the quadratic form
1
2 (z− zsensor)

2. Conversely, when the absolute error |z− zsensor| ex-
ceeds δ, the loss function switches to the linear form δ|z−zsensor|−
1
2 δ

2. This linear loss reduces the impact of large errors, improving
the model’s robustness to outliers.

Additionally, in the complex and uncontrollable lighting con-
ditions of autonomous driving scenarios, the quality of data cap-
tured by onboard image sensors can be significantly affected. To
address this issue, extended photometric loss [MBRS∗21] will be
introduced during model training. By optimising photometric loss,
colour and brightness consistency can be maintained under varying
lighting conditions, thereby improving the accuracy of 3D recon-
struction and the realism of novel view synthesis.

5. Preliminary Experiment Results

This section presents the preliminary experiment results of our pro-
posed novel view synthesis pipeline for road reconstruction in au-
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tonomous driving scenarios. The experiments were conducted to
evaluate the effectiveness of incorporating camera pose constraints
in SfM, the performance of the pipeline on different datasets, and
the efficiency of depth supervision methods.

SfM with Camera Pose Constraints

In our preliminary experiments, we introduced additional camera
pose constraints in SfM and optimised the parameters of SfM to
improve the accuracy of pose estimation. By incorporating rigid
relative pose constraints from stereo cameras, we observed a re-
duction in pose drift and increased stability in dynamic scenes. In
Figure 3, we selected two scenes to demonstrate the changes in
camera poses before and after applying pose constraints and pa-
rameter optimisation during sparse reconstruction.

Figure 3: The first column of images shows the results of sparse re-
construction without pose constraints and parameter tuning, where
noticeable camera pose drift is evident. The second column illus-
trates the results after introducing rigid relative pose constraints
and parameter tuning, demonstrating a significant reduction in
pose drift. The final column presents the optimised dense point
cloud reconstruction, showing a high quality of dense reconstruc-
tion.

Generalisation of processes across different datasets

To demonstrate the versatility of the proposed pipeline in road sur-
face reconstruction, we evaluated the pipeline on various datasets,
including the existing autonomous driving road reconstruction
dataset RSRD [ZXD∗24] and datasets collected using our custom-
developed stereo camera. As a preliminary experiment, we imple-
mented the backbone network of the pipeline using Instant Neu-
ral Graphics Primitives (Instant NGP) [MESK22] embedded with
depth supervision, aiming to accelerate the training process. In
terms of metrics, we chose the Peak Signal-to-noise Ratio (PSNR)
and Structural Similarity Index (SSIM) [WBSS04].

As Figure 4 shows, our proposed pipeline exhibits certain ro-
bustness in novel view synthesis with road reconstruction datasets
of varying qualities and scenarios. By incorporating depth super-
vision, the performance of the pipeline significantly surpass tradi-
tional algorithms (COLMAP) in scenarios with relatively sparse
images. Three datasets were used in preliminary experiments:
an 80-frame dense road reconstruction dataset, a 50-frame self-
collected sparse road dataset, and a 42-frame self-collected pot-
hole dataset. The image sizes are downsampled by factors of 8,

enabling the networks to converge in under 15 minutes. For the
road reconstruction datasets, significant differences highlighted in
red boxes demonstrated our method’s superiority over COLMAP.
Comparative experiments with the RSRD dataset underscored the
importance of depth supervision, showing that methods with depth
supervision achieve better results in SSIM and PSNR metrics and
qualitative image comparisons with the same number of training
iterations (30,000). While preliminary, these results highlight our
methodology’s potential. Future work will involve comprehensive
experiments to validate the pipeline’s effectiveness and generalis-
ability across various datasets and conditions.

Figure 4: Preliminary experimental results. To provide a clearer
visualisation of the scenes, we included reconstruction results with
camera poses in the top row.

6. Conclusion

In this paper, we discuss the design idea of a novel view synthe-
sis pipeline developed for road reconstruction tasks. This approach
employs virtual camera technology to synthesise images from un-
visited camera poses, thereby enhancing and expanding the existing
road reconstruction dataset. The pipeline primarily consists of three
steps: data acquisition, data preprocessing and fusion, and novel
view synthesis with geometric priors. Furthermore, the modular
design allows each component of the pipeline to be independently
optimised and upgraded, enabling flexibility to adapt to different
datasets and task requirements. Through this proposed pipeline, we
aim to enhance the robustness, realism, and photometric consis-
tency of difficult view synthesis for autonomous driving road re-
construction. This method is capable of handling complex dynamic
scenes and maintaining high-quality image synthesis across vary-
ing lighting conditions.

Additionally, we plan to develop our proposed modular process
into software and release it under an open source licence. We will
also integrate existing software and algorithms as submodules into
this process, providing users with more options. Furthermore, we
will optimise and open source our current stereo camera hardware
and software system. By achieving these goals, we aim to make
significant contributions to the fields of autonomous driving and 3D
reconstruction, offering new insights and tools for future research
and development.
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