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Abstract
Dimensionality reductions are a class of unsupervised learning algorithms that aim to find a lower-dimensional embedding for
a high-dimensional dataset while preserving local and global structures. By representing a high-dimensional dataset as a two-
dimensional scatterplot, a user can explore structures within the dataset. However, dimensionality reductions inherit distortions
that might result in false deductions. This work presents a visualization approach that combines a two-dimensional scatterplot
derived from a dimensionality reduction with two pointwise filtering possibilities. Each point is associated with two pointwise
metrics that quantify the correctness of its neighborhood and similarity to surrounding data points. By setting threshold for
these two metrics, the user is supported in several scatterplot analytics tasks, e.g., class separation and outlier detection. We
apply our visualization to a text corpus to detect interesting data points visually and discuss the findings.

CCS Concepts
• Human-centered computing → Information visualization; Visual analytics;

1. Introduction

Dimensionality Reductions (DRs) constitute a class of unsuper-
vised machine learning algorithms designed to uncover lower-
dimensional representations of high-dimensional datasets while
preserving both local and global structures [NA19]. By mapping
each data point from the original high-dimensional space to a point
in a lower-dimensional embedding, DRs enable the visualization of
complex datasets in two or three dimensions. While these scatter-
plots may lack direct interpretability along the axes, neighborhood
information still encode meaningful information about the similar-
ity of data points in the original high-dimensional space. In con-
trast to classical multivariate data visualizations like parallel coor-
dinate plots, scatterplot matrices, or glyphs, DRs offer several ad-
vantages, particularly in scalability concerning both the number of
data points and the dimensionality of the dataset [WGK10]. This
scalability makes DRs a state-of-the-art technique for effectively
visualizing high-dimensional datasets, facilitating the exploration
and understanding of complex data structures with opaque seman-
tic [TMW24].

However, DRs do not preserve local and global structures per-
fectly in the low-dimensional embedding, i.e., they inherit distor-
tions [NA19]. Therefore, conclusions about the high-dimensional
dataset made by observing patterns in the low-dimensional em-
bedding might be wrong. In this work, we present a visualization
approach that combines a juxtaposition of scatterplots, which re-
sults from the application of a DR, with a filtering functionality

for removing distortions and enhancing visual structures. Given the
high-dimensional dataset and its low-dimensional embedding, we
compute several metrics that capture the pointwise preservation of
neighborhoods. By aggregating these metrics to a single metric,
the user can set a threshold that removes distortions. Therefore, the
user can confidently conclude the structure of the high-dimensional
dataset based on its two-dimensional representation. Furthermore,
we enable the user to specify a threshold to detect outliers and
clusters more efficiently based on the neighborhood hit. Our fil-
tering mechanism is embedded in a visualization system, as shown
in Figure 1. We evaluated our visualization in the case of a text cor-
pus for detecting mislabeled data points. Our findings demonstrate
the effectiveness of our method in enhancing data visualization and
interpretation. We implemented our approach using the Javascript
library D3.js; we provided our prototype as a GitHub repository†.

2. Related Work

Basics on Scatterplots. Scatterplots are a widely used technique for
visualizing multivariate and high-dimensional data. Various visu-
alizations based on scatterplots have been developed and applied
"in a variety of exploratory and presentation contexts" [SG18].
Scatterplots can be applied to visualize the relationship between
two variables or to display abstract similarity between data points

† � hpicgs/filtering_scatterplots
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Figure 1: A prototypical dashboard that implements the proposed pointwise filtering. The high-dimensional data is given by the Seven
Categories dataset, which contains a total of 3142 text documents from seven categories. The left panel shows the whole dataset. The center
panel filters for coherent clusters where the number of shared nearest neighbors is maximized. The right panel filters for outliers concerning
the number of shared nearest neighbors.

encoded by their Euclidean distance. In the former case, often
many scatterplots are arranged as a scatterplot matrix to show
the pairwise relationships between several variables for a multi-
variate dataset [CLNL87]. Even though scatterplots scale better in
the number of data points than traditional visualization techniques
for multivariate data, they might suffer from overlap. Several ap-
proaches have been introduced to remove overlap to enhance read-
ability, e.g., splatterplots [MG13].Furthermore, scatterplots might
specify the layout of a visualization. For example, given a set of
text documents, a so-called corpus, a “semantic” layout, which
represents the semantic similarity between the documents, can
be computed by applying a DR to a text embedding [ACS*24b].
Techniques for providing details on demand are required to relate
data points in the two-dimensional scatterplot back to the high-
dimensional data. For example, Kim et al. applied a lens view that
shows a finer-grained layout for selected documents within a cor-
pus [KKP*16]. Similarly, Raval et al. developed an approach that
generates comprehensive word clouds and a natural language de-
scription for documents selected via a lasso [RWVW23]. For the
case of multivariate data, Thijssen et al. presented a visualization
approach to show statistics for each data dimension [TTT23]. Even
though all visualizations aim to detect interesting structures in the
high-dimensional dataset, they do not filter the datasets’ distortions
and might, therefore, derive false conclusions.

Quality Metrics for Dimensionality Reductions. Different
metrics have been introduced to quantify quality aspects of
DRs [BBK*18]. Thereby, one can distinguish between local and
global accuracy metrics [NA19]. Local accuracy metrics measure
how well neighborhoods are preserved in the low-dimensional em-
bedding, whereas global accuracy metrics quantify the preservation
of pairwise distances in the lower-dimensional embedding. Both
kinds of quality metrics have been used in benchmark studies to
compare the performance of several DRs by evaluating their results

on a set of datasets [vdMPvdH09; EMK*21; ACS*24a; ACS*24b;
VGS*20]. However, in these studies, the pointwise accuracy met-
rics were aggregated into one metric by taking the average of all
points, whereas the accuracy metrics for the individual points are
ignored.

Lespinats and Aupetit presented CheckViz, an approach to ex-
tending a two-dimensional scatterplot derived from a DR using
uniform background color coding to visualize distortions [LA11].
CheckViz relies on pointwise accuracy metrics to detect false and
missing neighbors, similar to our approach. The amount of distor-
tions within a region is mapped onto the color of the respective
Voronoi region, which helps the user spot points that do not al-
low interpretation of the high-dimensional data. Jeon et al. applied
a similar approach to visualize inter-cluster distortions [JKJ*21].
Heiter et al. introduced TRACE, a system designed for exploring
two-dimensional embeddings by mapping accuracy metrics onto
the color of points [HMS*24]. The authors demonstrate how their
system facilitates the analysis of both local and global distortions,
as well as the comparison of different embeddings.

3. Visualization Design

Metrics for Filtering Scatterplots. In the case of local accuracy
metrics, for each point, neighborhoods of fixed size in the origi-
nal space and the lower-dimensional representation are compared
and assigned a value. By averaging these values over each point,
a single metric is derived. By assessing the pointwise values, lo-
cal distortions can be filtered, and therefore, inferences on the
high-dimensional dataset based on the lower-dimensional embed-
dings can be drawn with higher confidence. In the following, let
X = {x1, . . . ,xN} ⊆ Rn denote the high-dimensional dataset and
Y = {y1, . . . ,yN}⊆R2 its two-dimensional representation after ap-
plying a DR. For a fixed value of k ∈ {1, . . . ,N}, let NRn

k (i) and
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Figure 2: Illustration for the false neighbors and missing neigh-
bors. The circles indicate the k nearest neighbors (k = 3) of y1 and
x1. The point x5 (blue) belongs to the kNNs of x1, but y5 is not
among the kNNs of y1, i.e., 5 ∈NR2

k (1)\NRn

k (1), and therefore x5
is a false neighbor. The point x3 (red) does not belong to the kNNs
of x1, but y3 is among the kNNs of y1, i.e., 3 ∈ NRn

k (1) \NR2

k (1),
and therefore y3 is a missing neighbor. The design and concept of
this figure are inspired by Nonato and Aupetit [NA19]

NR2

k (i) denote the indices of the k nearest neighbors of point xi

or yi in Rn or R2, respectively. Ideally the neighborhoods are pre-
served by a DR. However, two types of distortions might occur.
On the one hand, a neighbor in the high-dimensional neighbor-
hood is not represented in the lower-dimensional embedding, i.e.,
neighbors are missing. On the other hand, a neighbor shown in the
low-dimensional embedding might not be contained in the high-
dimensional dataset, i.e., neighbors are false. The concept of miss-
ing and false neighbors is illustrated in Figure 2. Most accuracy
metrics include rankings within the neighborhoods to yield a more
fine-granular quantification, e.g., the Mean Relative Rank Errors
(MRREs) [LV09]. Let ρi j denote the rank of point x j in the order-
ing according to the shortest distance from point xi in Rn. Analo-
gously, let ri j denote the rank of point y j in the ordering according
to the shortest distance from point yi in R2. The MRRE of point xi
for the lower-dimensional representation is given by

αMRRE,R2(i) =
1

k
∑

l=1

|N −2l +1|
l

∑
j∈NR2

k (i)

|ρi j − ri j|
ρi j

(1)

Analogously, the MRRE of point yi in the high-dimensional repre-
sentation is given by

αMRRE,Rn(i) =
1

k
∑

l=1

|N −2l +1|
l

∑
j∈NRn

k (i)

|ri j −ρi j|
ri j

(2)

The Trustworthiness measure also considers rankings of the
points [VK06]. However, different from the MRREs, the trustwor-
thiness only considers points within NR2

k (i) that are not in NRn

k (i).
The pointwise trustworthiness of point xi is given by:

αT (i) = 1− 2
k(2N −3k−1) ∑

j∈NR2
k (i)\NRn

k (i)

(ρi j − k), (3)

Analogously, the Continuity considers the points that are in NRn

k (i)

but not in NR2

k (i) [VK06]. Its formula coincides with the trustwor-

thiness, but uses ri j instead of ρi j. We aggregate these four metrics
to a single pointwise accuracy metric α by taking their average.

In our experiments, we assume that each point is associated with
a unique data category. The pointwise Neighborhood Hit compares
the categories of the k nearest neighbors for each point [PTT*12].
The neighborhood hit for point xi is therefore given by

β(i) =
|{ j ∈NR2

k (i)|ci = c j}|
k

, (4)

where ci and c j denote the classes of the points xi and x j. In any
case, we set k = 7 in alignment with previous benchmark studies.

Visual Mapping. Our visualization system requires a tabular
dataset with designated columns x and y, at least one categorical
variable, and the pointwise metric α. The metric β is derived from
the coordinates and the associated labels. Each data point is dis-
played within a scatterplot specified by x and y coordinates. We
ignore the scales within the scatterplot as they have no meaning;
only the closeness between points is interpreted as similar accord-
ing to the Gestalt Principles [War19] The category of each data
point is mapped onto its color using a qualitative color scheme.
Our interaction design follows Shneiderman’s information-seeking
mantra [Shn03]: Overview first, zoom and filter, then details-on-
demand. The overview is provided in three identical scatterplots ar-
ranged as a juxtaposition [LS15]. Initially, all points are displayed
without any filtering. Additional grid lines support the user’s nav-
igation. Two sliders over each scatterplot allow the user to select
thresholds for the local accuracy metric α and the neighborhood hit
β. By setting a high value for α, the number of distortions from the
DR will decrease as points are removed. Points that differ signifi-
cantly from the majority of points are called outliers. In our case of
well-defined clusters given by the predefined categories, an outlier
can be associated with a point with a different label than his k near-
est neighbors. By selecting a low value for β, outliers are isolated
from their surrounding clusters of different categories. Conversely,
setting a high value for β removes outliers and emphasizes given
clusters. Since three scatterplots are given, the entire view without
any filtering, the filtered version with high α and high β (cluster
view), and the filtered version with high α and low β (outlier view),
the user can inspect all three versions simultaneously and combine
them, e.g., the surrounding cluster of an outlier. This constellation
is shown in Figure 1. The user can explore specific regions within
the scatterplot via the zoom functionality. The zoom functions are
connected across all three scatterplots, i.e., zooming in on one scat-
terplot results in zooming in on the remaining two. The grid lines
are thereby adaptively updated. By hovering over a point, its unique
identifier is shown as a tooltip. This enables the user to analyze the
selected point by inspecting its entries in the original dataset.

Implementation. Our visualization prototype is implemented as
a website as it allows for high accessibility and interactivity. We
make use of Bootstrap for general CSS styling and its grid system
to arrange the plots and interactive elements of our visualization.
Scatterplots are implemented by using the javascript framework
D3.js [BOH11], whose select-append mechanism enables data con-
nection with DOM elements. Furthermore, functions like zooming,
panning, tooltips, and grid lines were implemented with D3.js’s
functionality. Our implementation of accuracy metrics relies on the
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seven_categories_data/geography/
class_11_geography_chapter15_6.txt

Figure 3: Zoom into the outlier view for the seven categories cor-
pus. The selected data point, whose filename is shown as a tooltip,
is associated with geography but is mainly surrounded by docu-
ments that are associated with biology. By inspecting the document,
it becomes apparent that it is rather about biology.

Python library ZADU [JCJ*23] and the implementation provided
by Atzberger and Cech et al. [ACS*24b]. We refer to our GitHub
repository for details on our implementation and setup instructions.

4. Results

In the following, we apply our visualization to the Seven Cate-
gories Corpus from Kaggle‡. The corpus consists of 3142 text doc-
uments, each associated with a unique category that indicates its
underlying semantics. Given the documents, we perform baseline
preprocessing steps, e.g., tokenization, removal of stop words, and
lemmatization, to reduce the vocabulary size and filter out words
that carry no semantic meaning. After the preprocessing, the cor-
pus is given as a document-term matrix (DTM), which stores the
absolute frequencies of the words within the documents. We then
apply Latent Dirichlet Allocation together with t-SNE to derive a
two-dimensional layout in which the Euclidean distance reflects se-
mantic similarity [ACS*24b; ACS*24a]. The resulting scatterplot
representation is shown in Figure 1. To emphasize the clusters in
the scatterplot, we set the threshold for the kNN hit in the second
scatterplot to 0.85. To emphasize the points that are associated with
a different category than its neighbors, we filter for points with a
kNN hit smaller than 0.15. In both cases, we set the threshold of

‡ kaggle.com/datasets/deepak711/4-subject-data-text-classification

accuracy to 0.85 to remove distortions. Inspecting the remaining
points in the outlier view yields data points that differ from their
neighbors and others from the same category. One example of such
an outlier is shown in Figure 3, which shows a data point that is
associated with the category geography but lies within the biology
cluster.

5. Conclusions

DRs are widely used for visualizing high-dimensional data as they
scale with the number of dimensions and data points. However, the
resulting scatterplots might inherit distortions; therefore, conclu-
sions drawn from the scatterplot might be wrong. We presented a
visualization that allows for filtering points based on two-pointwise
metrics that remove distortions and emphasize clusters and outliers.
Thus, the visualization supports users in detecting points of spe-
cial interest. In any case, outliers and clusters could also be com-
putationally detected, e.g., by using a clustering algorithm like k-
Means [ASI20] and an outlier detection algorithm like isolation
forest [LTZ08]. However such clustering algorithms and outlier de-
tection techniques, are not without their limitations. They can in-
herit errors that are not immediately apparent to the user, potentially
leading to inaccurate results. This is a significant drawback that our
approach overcomes, providing users with more reliable and inter-
pretable results. Furthermore, in both cases, the results would be
given as lists of integers, which do not allow for easy connection.
In contrast, in our proposed visualization approach, patterns can be
detected and linked with high confidence.

We see different directions for future work. One idea is to inte-
grate our filtering mechanism into existing visualizations that build
up on a scatterplot layout, e.g., Bubble Sets [CPC09] or glyph visu-
alizations [KKG*20]. In particular, it would be interesting to what
extent the visualizations are affected when distortions are removed
and clusters and outliers are highlighted. Furthermore, to make our
concept more accessible, it would be beneficial to integrate our con-
cept into widely used libraries and frameworks, e.g., a Python li-
brary that can be used within a Jupyter notebook, or by hosting a
web service where users can upload and inspect their data.
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