
EG UK Computer Graphics & Visual Computing (2024)
A. Slingsby and D. Hunter (Editors)

EBBVH: A Novel Method for Constructing Bounding Volume
Hierarchies

M. Houghton1 and K. Spoerer2

1 University of Nottingham, mh33188@gmail.com
2 University of Nottingham, pszks@nottingham.ac.uk

Abstract
We present an attempt to improve upon the construction of the most prevalent acceleration structure that is used in ray traced
rendering techniques, the Bounding Volume Hierarchy. Our improvement is a novel technique for BVH construction called
‘Edge-Based Bounding Volume Hierarchy’. This algorithm uses a hybrid top-down & bottom-up approach to improve perfor-
mance for raytracing in large scenes, by up to 10x in some scenes.

CCS Concepts
• Computing methodologies → Ray tracing;

1. Introduction

The computational cost of ray tracing methods comes from the in-
tersection tests between rays and primitives in a scene, in a naïve
implementation each ray is tested against each primitive in a scene.
One geometry intersection test has a time complexity of O(N)
where N is the number of primitives in the scene, these primitives
are typically triangles. In most other cases this time complexity
would be quite good however in modern applications there can be
millions of primitives in each scene. These millions of primitives
may be tested several times per pixel, this means that the naïve
O(N) approach won’t be enough for a responsive real time appli-
cation. This would even make offline rendering infeasible for even
moderately complex scenes. To make ray tracing feasible even in
an offline situation a spatial acceleration structure must be used.
The most prevalent acceleration structure is the bounding volume
hierarchy (BVH).

2. Previous Work

2.1. Top Down Approaches

Top-down construction methods for creating BVHs involve first
creating a root node that contains all the primitives in the scene.
Then recursively splitting this into disjoint groups until there are
leaves that contain the desired number of primitives.

A distinguishing factor in these types of algorithms is deciding
in which axis to split the node. Along with deciding where in that
axis to split it. The simplest approach is to split the node spatially
halfway along the longest object-space axis of the axis-aligned
bounding box (AABB), using the triangles centroid to determine
which child node they are placed in. Another is to use the surface

area heuristic where each split point in each axis is evaluated and
the best split is taken. Evaluating all possible split locations for the
SAH construction is expensive so instead only a few possible split
locations are considered [Wal07].

2.2. Bottom Up Approaches

Alternatively, to the top-down approaches there are bottom-up ap-
proaches such as Agglomerative Clustering [WBKP08]. These al-
gorithms represent each primitive as a cluster and then forms them
into larger clusters based on a cost function. This process is then
repeated till only one root cluster remains. This process generally
produces higher quality results but takes more time when compared
to top-down approaches [MOB∗21]. The Approximate Agglomer-
ative Clustering [GHFB13] algorithm uses the space-filling Morton
Curve to limit the nearest neighbour search area for Agglomerative
Clustering. Parallel Locally Ordered Clustering [MB18] (PLOC)
extends the combination of Morton Curve and Agglomerative Clus-
tering to allow for bottom-up construction on the GPU. PLOC
recognizes that if two clusters are the nearest neighbours of each
other then they can be merged straight away, and in parallel. It then
searches a predefined range up and down the sorted list of clusters
to find the nearest neighbour cluster.

3. Proposed algorithm

The initial idea was sparked by a poster [AF23] from Imagination
Technologies at the High-Performance Graphics conference. This
poster describes a method to pair triangles within models to con-
struct quads. We are using this posters definition of quads. Quads
are two triangles that share an edge, they do not need to be co-
planar.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/cgvc.20241222 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/cgvc.20241222


2 of 5 M. Houghton & K. Spoerer / EBBVH

This is useful for real time ray tracing as most models are stored
and transferred as triangles but, in GPU hardware, ray-quad inter-
section tests can be more efficient as we can share the computation
for the shared edge. They require less memory, only 4 indices as
opposed to 6 with a quad constructed from 2 triangles. It also re-
duces the number of primitives in a BVH which reduces both the
memory and time to traverse it.

Our method of BVH construction EBBVH builds upon this
method by using this pairing approach to progressively construct
a BVH. The intuition behind this algorithm is that methods such
as PLOC and LBVH [LGS∗09] function by grouping together tri-
angles that are nearby each other. They do this by exploiting the
space-filling Morton Curve, assuming that if two primitives are
close along the Morton Curve they are close together in regular
3D space. EBBVH uses the fact that if two triangles share an edge
then we know for a fact that they are close by as they share this
edge i.e. the triangles touch each other.

This idea is then applied iteratively where at the start, individual
primitives are considered and paired if they share an edge, then
these pairs are clustered together if the primitives inside them share
an edge, these clusters are then considered, this is repeated until
no more clusters can be clustered together i.e. none of the clusters
share edges with each other.

This will leave us with several root nodes, these can then be
thought of as the leaf nodes of another BVH so we then use an-
other construction algorithm to combine these nodes into a single
BVH. In our current implementation a recursive-split method us-
ing spatial median splits, detailed in [WK06], was used however
this can be substituted for any approach.

In practice this means that EBBVH is a combination of a bottom-
up phase and a top-down phase .

Algorithm 1 shows the pseudocode for our EBBVH construction
method. The initializeEdges function creates an array of edges, for
each triangle it creates 3 edges: v0-v1, v1-v2, v2-v0. InitializeClus-
ters creates an initial cluster for each triangle as this is a bottom-up
method.

The edge list is sorted using indices[0] so that edges that are
shared are next to each other, each triangle will add all 3 of its edges
so shared edges appear twice. It is then sorted using the bound-
ing box surface area (BBSA) of the edge so that the largest shared
edges are paired first the reason for this is detailed in [AF23].

Input: Vertices, Indices, PAIR_CUTOFF
Output: Hierarchical Clusters
edges = InitializeEdges(Vertices, Indices);
sort edges using edge.indices[0];
stable sort edges using BBSA;
clusters = InitializeClusters(Vertices, Indices);
done_clusters = [];
HashMap<int, int> pairs;
roots = initializeRoots(clusters);
int i = clusters.size();
int numPaired = 0;
bool finished = false;
while not finished do

finished = true;
numPaired = 0;
foreach pair of edges e1 and e2 in edges do

if pairs contains e1.cluster or e2.cluster then
continue;

end
if e1.indices ̸= e2.indices or

e1.cluster == e2.cluster then
continue;

end
pairs[e1.cluster] = i;
pairs[e2.cluster] = i;
roots.insert(i);
i++;
done_clusters.insert(clusters[e1.cluster]);
done_clusters.insert(clusters[e2.cluster]);
roots.erase(e1.cluster);
roots.erase(e2.cluster);
clusters.insert(new Cluster(e1.cluster, e2.cluster,

done_clusters.size() - 2));
finished = false;
numPaired++;

end
foreach edge in edges do

if pairs[edge.cluster] exists then
edge.cluster = pairs[edge.cluster];

end
end
pairs.clear();
if numPaired < PAIR_CUTOFF then

break;
end

end
FinishConstruction(roots);

Algorithm 1: ConstructEBBVH

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



M. Houghton & K. Spoerer / EBBVH 3 of 5

3.1. Small Example

This is an illustrative example of the algorithm running on a small
section of geometry. Bounding boxes have been expanded for the
sake of visualization.

Figure 1: Initial Geometry

A

B

C

D

E

The first iteration of the bottom-up phase clusters triangles that
share an edge.

Figure 2: Iteration 1 of bottom-up phase

A

B

C

D

E

The next bottom-up iteration then combines clusters that share an
edge.

Figure 3: Iteration 2 of bottom-up phase

A

B

C

D

E

The bottom-up phase is now completed leaving 2 root clusters. The
top down phase then combines these. This leaves the final BVH.

Figure 4: Result after top-down phase

A

B

C

D

E

4. Methodology

We implemented the methods using C++. The same BVH traversal
algorithm was utilised for each method in the comparison. The ray-
tracing results where all obtained on a single CPU (Intel Core-i5
11300H @ 3.10GHz) core.

The ’Approximate Agglomerative Clustering’ (AAC) algorithm
was implemented from the pseudocode in [GHFB13]. The AAC
BVH was constructed using a single thread on the CPU so con-
struction time isn’t representative of a multithreaded implementa-
tion. However the ray-tracing performance should still be represen-
tative.

The binned ’Surface Area Heuristic’ (SAH) and recursive split

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



4 of 5 M. Houghton & K. Spoerer / EBBVH

used reference implementations by Jacco Bikker [Bikb] & [Bika],
the binned SAH approach uses 8 bins for construction.

5. Results

Table 1: Construction time for each algorithm, measured in mil-
liseconds.

Recursive Split [Bikb] AAC [GHFB13] Binned SAH [Wal07] EBBVH (ours)
Sponza 48 390 514 497
Bunny 159 191 251 312
Dragon 398 351 542 566

San-Miguel 2496 12161 24958 38127

Table 2: Performance from camera, values in MRays/s.

Recursive Split [Bikb] AAC [GHFB13] Binned SAH [Wal07] EBBVH (ours)
Sponza 0.00028 0.06 0.004 0.5
Bunny 3.07 0.26 2.88 0.89
Dragon 3.47 0.157 2.95 1.44

San-Miguel 0.002 0.002 0.013 0.22

Table 3: Performance from random rays. Values in MRays/s.

Recursive Split [Bikb] AAC [GHFB13] Binned SAH [Wal07] EBBVH (ours)
Sponza 0.0013 1.08 0.050 3.26
Bunny 5.02 0.98 3.2 2.05
Dragon 5.33 2.42 3.5 2.69

San-Miguel 7.06E-5 0.014 0.7 0.95

EBBVH currently has a construction time that is similar to a
Binned SAH approach. It also has the worst average construction
time out of all the algorithms that we have benchmarked. How-
ever, it has substantially better performance in large scenes such as
Sponza and San-Miguel where it massively outperforms the other
algorithms, by a factor of 2000 in the case of the recursive split al-
gorithm. In such large scenes it also outperforms the binned-SAH
approach by a factor of 20 in the San-Miguel test scene. EBBVH
isn’t well suited for construction of single objects such as Bunny
and Dragon with it not performing at all as well as either binned
SAH or even a simple recursive split approach.

More generally the type of scenes where EBBVH will perform
the best are those with several disconnected parts of geometry. This
is due to the bottom-up phase of the algorithm producing good
quality leaf nodes. However if all of the geometry is connected for
example in Bunny then the bottom-up phase will produce nodes
closer to the root in the BVH which are less optimal.

The performance of EBBVH is also reasonably high in the ran-
dom rays situation with it outperforming the other algorithms in
Sponza and San-Miguel again. This means that it’s performance
advantage would not be lost with a more complex path-tracing al-
gorithm that uses more discontinuous rays in its sampling.

The way that we have implemented EBBVH is somewhat lack-
ing in terms of construction time optimizations with it using several
hash maps which are slow in comparison to the other algorithms
such as recursive split which only require array lookup operations.
Along with this EBBVH also requires the construction of the edge-
table which is somewhat costly. This cost might be better justified
if the GPUs can gain a further performance benefit by pairing tri-
angles into quads as seen in [AF23].

Figure 5: Render of Sponza and San-Miguel using EBBVH.

Figure 6: Render of Bunny and Dragon using EBBVH.

6. Conclusion & Further Work

An avenue for further optimization would be to create a GPU im-
plementation of EBBVH, this could substantially reduce the con-
struction time of both the edge table, associated sorting and the
pairing phases. However, we’re unsure if this is possible due to the
nature of the algorithm. If a GPU implementation could be created
this would almost certainly dramatically reduce construction times
as seen with LBVH and AAC methods where GPU implementa-
tions require only milliseconds to run as seen in [LGS∗09].

Further work could also entail investigating further exploiting
the connected nature of the leaf nodes by rendering triangle strips,
made of several connected quads, instead of triangles or quads. This
could reduce memory usage further as each additional triangle in a
strip only requires one additional vertex. This could even integrate
into more complex traversal techniques such as those described in
[WBB08].

Due to the large construction time and poor performance, we
would not use EBBVH for situations where the BVH of single ob-
jects needs to be frequently reconstructed. Instead, it would be more
suitable for a 3D rendering type workload where scenes are often
disconnected and where the users are less sensitive to high con-
struction times as the render times can be substantial. It may also
be suited to a prototyping use case for games, again due to the user
being less sensitive to construction time along with faster to con-
struct methods not providing as good performance in disconnected
scenes.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



M. Houghton & K. Spoerer / EBBVH 5 of 5

References
[AF23] AMAN A., FENNY S.: Fast triangle pairing for ray

tracing. High Performance Graphics, 2023. URL: https:
//www.highperformancegraphics.org/posters23/
Fast_Triangle_Pairing_for_Ray_Tracing.pdf. 1, 2, 4

[Bika] BIKKER J.: How to build a bvh part 3: quick builds.
URL: https://jacco.ompf2.com/2022/04/21/
how-to-build-a-bvh-part-3-quick-builds/. 4

[Bikb] BIKKER J.: How to build a bvh – part 1: Ba-
sics. URL: https://jacco.ompf2.com/2022/04/13/
how-to-build-a-bvh-part-1-basics/. 4

[GHFB13] GU Y., HE Y., FATAHALIAN K., BLELLOCH G.: Efficient
bvh construction via approximate agglomerative clustering. In Proceed-
ings of the 5th High-Performance Graphics Conference (New York, NY,
USA, 2013), HPG ’13, Association for Computing Machinery, p. 81–88.
URL: https://doi.org/10.1145/2492045.2492054, doi:
10.1145/2492045.2492054. 1, 3, 4

[LGS∗09] LAUTERBACH C., GARLAND M., SENGUPTA S.,
LUEBKE D., MANOCHA D.: Fast bvh construction on gpus.
Computer Graphics Forum 28, 2 (2009), 375–384. URL:
https://onlinelibrary.wiley.com/doi/abs/10.
1111/j.1467-8659.2009.01377.x, arXiv:https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/j.
1467-8659.2009.01377.x, doi:https://doi.org/10.
1111/j.1467-8659.2009.01377.x. 2, 4

[MB18] MEISTER D., BITTNER J.: Parallel locally-ordered clustering
for bounding volume hierarchy construction. IEEE Transactions on Vi-
sualization and Computer Graphics 24, 3 (2018), 1345–1353. doi:
10.1109/TVCG.2017.2669983. 1

[MOB∗21] MEISTER D., OGAKI S., BENTHIN C., DOYLE M. J.,
GUTHE M., BITTNER J.: A survey on bounding volume hierarchies
for ray tracing. Computer Graphics Forum 40, 2 (2021), 683–712.
URL: https://onlinelibrary.wiley.com/doi/abs/
10.1111/cgf.142662, arXiv:https://onlinelibrary.
wiley.com/doi/pdf/10.1111/cgf.142662, doi:https:
//doi.org/10.1111/cgf.142662. 1

[Wal07] WALD I.: On fast construction of sah-based bounding volume
hierarchies. In 2007 IEEE Symposium on Interactive Ray Tracing (2007),
pp. 33–40. doi:10.1109/RT.2007.4342588. 1, 4

[WBB08] WALD I., BENTHIN C., BOULOS S.: Getting rid of packets
- efficient simd single-ray traversal using multi-branching bvhs -. In
2008 IEEE Symposium on Interactive Ray Tracing (2008), pp. 49–57.
doi:10.1109/RT.2008.4634620. 4

[WBKP08] WALTER B., BALA K., KULKARNI M., PINGALI K.: Fast
agglomerative clustering for rendering. In 2008 IEEE Symposium on In-
teractive Ray Tracing (2008), pp. 81–86. doi:10.1109/RT.2008.
4634626. 1

[WK06] WÄCHTER C., KELLER A.: Instant Ray Tracing: The Bound-
ing Interval Hierarchy. In Symposium on Rendering (2006), Akenine-
Moeller T., Heidrich W., (Eds.), The Eurographics Association. doi:
/10.2312/EGWR/EGSR06/139-149. 2

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://www.highperformancegraphics.org/posters23/Fast_Triangle_Pairing_for_Ray_Tracing.pdf
https://www.highperformancegraphics.org/posters23/Fast_Triangle_Pairing_for_Ray_Tracing.pdf
https://www.highperformancegraphics.org/posters23/Fast_Triangle_Pairing_for_Ray_Tracing.pdf
https://jacco.ompf2.com/2022/04/21/how-to-build-a-bvh-part-3-quick-builds/
https://jacco.ompf2.com/2022/04/21/how-to-build-a-bvh-part-3-quick-builds/
https://jacco.ompf2.com/2022/04/13/how-to-build-a-bvh-part-1-basics/
https://jacco.ompf2.com/2022/04/13/how-to-build-a-bvh-part-1-basics/
https://doi.org/10.1145/2492045.2492054
https://doi.org/10.1145/2492045.2492054
https://doi.org/10.1145/2492045.2492054
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01377.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01377.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2009.01377.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2009.01377.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2009.01377.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2009.01377.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2009.01377.x
https://doi.org/10.1109/TVCG.2017.2669983
https://doi.org/10.1109/TVCG.2017.2669983
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.142662
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.142662
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.142662
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.142662
https://doi.org/https://doi.org/10.1111/cgf.142662
https://doi.org/https://doi.org/10.1111/cgf.142662
https://doi.org/10.1109/RT.2007.4342588
https://doi.org/10.1109/RT.2008.4634620
https://doi.org/10.1109/RT.2008.4634626
https://doi.org/10.1109/RT.2008.4634626
https://doi.org//10.2312/EGWR/EGSR06/139-149
https://doi.org//10.2312/EGWR/EGSR06/139-149

