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Abstract
This work aims to improve texture inpainting following clutter removal in scanned indoor meshes. This is achieved through a
new UV mapping pre-processing step that leverages semantic information from indoor scenes to more accurately align the UV
islands with the 3D representations of distinct structural elements, such as walls and floors. Semantic UV Mapping enhances
traditional UV unwrapping algorithms by incorporating not only geometric features but also visual features derived from the
existing texture. This segmentation improves UV mapping and simultaneously simplifies the 3D geometric reconstruction of the
scene after the removal of loose objects. Each segmented element can then be reconstructed separately, using the boundary
conditions of the adjacent elements. Since this is performed as a pre-processing step, other specialized methods for geometric
and texture reconstruction can be employed in the future to further enhance the results.

CCS Concepts
• Computing methodologies → Mesh geometry models; Texturing;

1. Introduction

Empty 3D indoor environments, captured from real locations, are
in high demand in the gaming and Architecture, Engineering, Con-
struction, and Operations (AECO) industries [VBV22]. These en-
vironments can be used for a wide variety of applications, such as
remodeling, renovations, and interactive simulations. These envi-
ronments can be captured and processed using different methods.
One of the more popular methods involves using a 3D scanner to
capture a full 3D point cloud accompanied by panoramic images
that add more information. For efficient consumption, these mod-
els are converted to meshes, which retain much of the geometric
detail while also embedding the textural information of the sur-
faces [BVGW24]. However, these environments are rarely empty
when captured. Loose objects present during the capture process
can lead to occlusions, either because they are placed against a
permanent element or because they block the view of another part
of the room. Current semantic instance segmentation methods can
automatically detect these objects [DRB∗18], enabling an auto-
mated removal process. Removing these objects from the scene re-
veals occlusions and holes, resulting in an incomplete environment.
Therefore, there is a need to complete these missing parts.

Holes and missing regions in meshes can be completed in two
steps: first geometrically and then texturally. Geometric hole fill-
ing has been a field of much research, leading to very robust tools
and algorithms [DRB∗18, MCST22, BG14] for filling these holes.
Image inpainting has recently gained popularity due to the rise
of diffusion models, which dramatically improve inpainting re-

sults [LDF∗22]. However, there are still some obstacles to using
this method on 3D model textures. The visual appearance of a 3D
object is created by using a texture map, which projects the faces
onto a 2D plane. This projection is called UV projection. The pro-
jection process creates a disconnect between the 3D mesh and the
UV texture map [VBV23], as the location of a face in 3D space
does not necessarily correspond to the same location on the UV
plane. This means adjacent faces do not always remain adjacent in
2D.

Current SOTA works approach this problem in different ways.
Works like [GSZ∗21, SGC∗24, WFR23] use a 2D inpainting ap-
proach to paint on the camera views and reproject them onto the
mesh. While this works well for objects close to walls or distant
from the camera, these methods struggle with large occlusions due
to the complex room geometry and multiple objects covering the
views. Other works [FN22, OMN∗19] aim to directly predict the
color in 3D space. However, these models are limited in resolution
due to the use of vertex colors or texture fields.

The main goal of this work is to improve the UV projection of
the scene by leveraging semantic instance segmentation to separate
loose parts from the scene, as well as distinct structural elements
like walls and floors. Using these masks, the loose objects can be
removed from the scene, and the resulting missing geometry can
be reconstructed element by element. Furthermore, the segmented
structural elements also allow for better UV mapping, ensuring the
resulting UV map more closely matches the 3D mesh, minimizing
distortion and keeping adjacent faces together. This new UV map
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will improve the texture inpainting process, leading to a more visu-
ally appealing mesh.

2. Background and related work

2.1. Texture inpainting

Restoring missing parts of an image has evolved from algorithm-
based methods like Gaussian inpainting [GL17] to machine
learning-based approaches like Inpaint Anything [YFF∗23] and
Mask-Based Inpainting [LLZ∗22]. These approaches have the ad-
vantage of being able to predict the missing pixels based on the
surrounding data instead of solely extrapolating a pattern from the
image.

The shift towards diffusion-based inpainting has enabled works
like No Shadow Left Behind [ZMBKC21] to remove masked ob-
jects completely from a picture, including the object’s shadows.
PanoDR [GSZ∗21] and the work that builds on it [SGC∗24] take
this a step further by training the diffusion model on spherical
panoramic images to enable direct object removal on 360° images.
Because these models operate purely in 2D, they do not contain any
3D representation of the scene.

Diffusion-based inpainting has also been used to remove objects
from a scene in 3D. Clutter Detection and Removal [WFR23] in-
paints both RGB and depth images from multiple viewpoints of a
single object and reconstructs the 3D mesh in those missing parts.
NeRFiller [WHJ∗23] uses a similar approach but creates a Neu-
ral Radiance Field (NeRF) instead. These view-based models are
limited by what is visible to the camera in a single view. Instead
of using a camera view of the missing region, Texture Inpainting
for Photographic Models [MCT23] uses dynamic UV mapping to
ensure the missing region is always centered and surrounded by
reference pixels to perform the inpainting, but it is limited to small
areas.

The missing color can also be predicted directly on the mesh.
STINet [FN22] directly predicts the vertex colors of the missing
regions, while Texture Fields [CYF22] creates an implicit neural
field to generate the missing regions. However, these methods are
limited by the resolution of the geometry and struggle to generate
fine details.

2.2. Scene Segmentation

When trying to segment a scene, the different objects need to be
detected. Works like Votenet [DHN20] and V detr [SGY∗23] use a
point-transformer model [WJW∗23] to create bounding boxes for
each distinct object. While these work well, they only detect ob-
jects.

Full scene instance segmentation takes this a step further by
labeling every face. Works like Unscene3D [RLD23] can per-
form class-agnostic segmentation completely unsupervised. Sai3D
[YLX∗23] also enables CLIP-based embedding to search for spe-
cific objects in the scene.

2.3. UV mapping

The biggest obstacle in using 2D inpainting methods on 3D meshes
is the lack of a UV map that is both efficient and retains the face-

adjacent relationships of objects in a scene. Graphseam [TRC∗20]
uses a Graph Neural Network (GNN) to automate the UV map-
ping process while retaining semantic seams, while Flatten Any-
thing [ZHWH24] uses point-wise mappings between the 3D points
and UV coordinates. However, these methods are difficult to gen-
eralize to a large scene. Nuvo [SGV∗23] aims to address this by
optimizing the UV layout for the visible parts using a neural field.
This largely overcomes the challenges posed by the complex ge-
ometry of reconstructed scenes.

3. Methodology

The proposed method as shown in Figure 1 consists of multiple
steps: First the input mesh is segmented, and the segmentation
masks are used for both element separation and UV seam creation.
Second, The loose objects are removed and the segmented struc-
tural elements are all completed geometrically. Third, the UV map
is unwrapped following the semantic seams. Fourth, the texture is
inpainted in the newly created geometry. Finally, the texture is re-
projected on the empty mesh.

3.1. Scene segmentation

The first step is segmenting the full scene as seen in Figure 1a. Be-
fore the segmentation is performed, due to the limited resolution
of the mesh, we cannot guarantee that each face is exclusive to a
single object. This is why we first perform a Geometry refinement
step [VBV23] to split the faces according to their texture. Both the
loose objects and the structural elements are detected using Un-
Scene3D [RLD23] Which uses geometric and colour features to
generate pseudo masks, these masks are then refined using a self-
trained model. Since the model is optimised for object detection,
structural elements like walls can sometimes remain clustered. We
also perform a RANSAC plane segmentation [KL18] to refine the
walls.

3.2. Geometric Reconstruction

The loose objects, detected in the previous step, are removed from
the scene as illustrated in Figure 1b. This results in large holes that
need to be reconstructed. Before each segmented structural element
is reconstructed one by one, the RANSAC planes, detected in the
previous step, are used to determine the intersection edges between
the elements. These edges form the boundary conditions for the
Delaunay reconstruction [BG14].

3.3. Semantic UV Mapping

After the geometry has been reconstructed, the newly generated
faces are given the same label as the original element. The bound-
aries between the different segmentation labels are marked as UV
seams. These seams serve as the basis for the semantic UV mapping
as seen in Figure 1c. Since the end goal is to inpaint the missing ar-
eas, we optimize the UV map to minimize distortion by using Least
Squares Conformal Maps [LPRM02], while still aiming to keep as
many faces as possible from the same label joined. This is largely
possible due to the flat nature of the structural elements in indoor
scenes. Furthermore, when inpainting textures the orientation of the
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Figure 1: Overview of the proposed pipeline, starting with a furnished mesh (left), featuring the parallel scene segmentation and geometric
reconstruction (top), and the semantic UV mapping and texture reconstruction (bottom) to result in an empty room mesh (right).

image is also relevant. By introducing a Y/Z up consistency in our
unwrapping method, each element is oriented consistently. where
vertical elements like walls and beams are always oriented with the
up-direction facing up on the image, flat elements like floors and
ceilings have their forward direction facing up.

3.4. Texture reconstruction

The final step after the mesh has been semantically UV mapped is
painting in the missing regions. This is performed on the 2D texture
of each element. The newly generated geometry serves as the in-
painting mask, this ensures that only the new parts are altered. The
rest of the UV island serves as a reference for the diffusion-based
inpainting [LDF∗22]. Because each element is inpainted separately,
there is no confusion from other adjacent materials possible. After
the texture has been inpainted completely, the texture is reprojected
on the 3D mesh. Because the UV map was optimized for inpaint-
ing, and not for efficiency, the resulting UV maps can be very large.
This is why, for a final step we repack the UV layout for optimized
space efficiency while keeping the semantic islands intact.

4. Experiments

4.1. Dataset

For our experiments, we used the ScanNet++ [YLND23] and Mat-
terport 3D [CDF∗17] Datasets as seen in Figure 2. The ScanNet++
dataset contains 460 high-resolution 3D reconstructions of indoor
scenes with dense semantic and instance annotations. The Matter-
port 3D Dataset is a scanned dataset that consists of 90 fully tex-
tured building-scale scenes, including semantic labels of the whole
dataset. We focused on single-room scenes with moderately dense
furniture, pre-labelled. These labels serve as the baseline for both
the loose object removal and the semantic UV mapping.

4.2. Object detection and removal

For our experiments, the instance masks from the Matterport3D
dataset are used to separate the mesh as seen in Figure 3. The la-
bels do not always align perfectly with the objects, this is why we
removed all the faces inside the bounding box of the objects. this

Figure 2: A scene from the ScanNet++ dataset (left) and Matter-
port3D dataset (right)

ensured a clean-cut line. The RANSAC plane segmentation per-
formed well on the walls and floors but had difficulty with more
complex geometry.

Figure 3: A room(left) and its segmented labels (right)

The experiments have shown that the geometry completion per-
forms better when each object is removed sequentially, rather than
in parallel. Furthermore, overlapping objects can disrupt the planar
detection, so they should be removed together, while this leads to a
higher amount of existing data that is removed, the reconstruction
results, illustrated in Figure 4, will be better.
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Figure 4: The object-removed room (left) and the reconstructed
room (right)

4.3. Semantic UV Mapping

The semantic segmentation has created the UV seams at not just
geometrically distinct edges, but also texturally (Figure 3). Due to
the simple geometry of the structural elements the uv maps can be
created without too much distortion using the segmentation seams
as seen in Figure 5. We do see, however, that due to the orientation
constraint, the UV maps are laid out separately for each object. This
means the texture size is larger than the original texture map from
the dataset.

Figure 5: The new seams in the un-texture-completed scene(top-
left), the original texture map (top-right) the new semantic UV lay-
out for the floor (bottom-left) and the inpainted texture (bottom-
right)

4.4. Texture reconstruction

The texture inpainting process is able to use the existing texture
as an example which creates mostly indistinguishable textures for
the more basic surfaces (5). The faces of the new geometry provide
a clear bounding mask, allowing the inpainting to only affect the
required area. The final result can be seen in Figure 6

Figure 6: The object removed textured room (left) final unfurnished
room (right)

5. Discussion

The resulting empty scenes after the loose objects have been re-
moved show believable results. This is helped by the fact that the
structural elements in indoor scenes are generally straightforward.
By reducing the geometric reconstruction to a planar triangulation,
the problem becomes much less complex and manageable. This is
however not possible for all types of structural elements. More or-
ganic shapes require a more complex Reconstruction like AUTO-
SDF [MCST22]. The advantage of our pre-processing pipeline
is that the methods are interchangeable, while still retaining the
advantages of the semantic segmentation. The inpainted textures
show very good results for repetitive and basic materials. However,
more graphic elements that are not properly segmented can lead to
artifacting in the final results. The effectiveness of this method is
however difficult to quantify due to the lack of real ground truth
data. This is why we visually evaluated each scene, checking for
visual consistency and believability.

6. Conclusion

This paper introduced a novel pre-processing step in the object
removal pipeline for indoor scanned environments. By semanti-
cally labelling the different elements in the scene, both the geom-
etry completion and texture reconstruction can be improved due to
clearer boundaries between the different elements. The holes re-
sulting from the removal of the detected loose objects can be better
completed element-wise, rather than for the whole scene. Using the
predicted intersection lines between the different elements, we can
clearly define the boundary conditions for the geometric Recon-
struction. The semantic UV mapping also ensures each element is
mapped as close as possible to its 3D representation, making the in-
painting process much more straightforward. The existing, textured
parts of the elements serve as a reference for the newly created ge-
ometry.
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