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Figure 1: An illustration of smooth plausible cyclic motion transition with improved prediction using our dual time window extended attention
method of our DeFT-Net frequency transformer. Right foot anchor placement instance can be observed at the start of the transition through
to end of the right foot’s return to ground contact within the full walk cycle.

Abstract

Enabling online virtual reality (VR) users to dance and move in a way that mirrors the real-world necessitates improvements
in the accuracy of predicting human motion sequences paving way for an immersive and connected experience. However, the
drawbacks of latency in networked motion tracking present a critical detriment in creating a sense of complete engagement,
requiring prediction for online synchronization of remote motions. To address this challenge, we propose a novel approach that
leverages a synthetically generated dataset based on supervised foot anchor placement timings of rhythmic motions to ensure
periodicity resulting in reduced prediction error. Specifically, our model compromises a discrete cosine transform (DCT) to
encode motion, refine high frequencies and smooth motion sequences and prevent jittery motions. We introduce a feed-forward
attention mechanism to learn based on dual-window pairs of 3D key points pose histories to predict future motions. Quantitative
and qualitative experiments validating on the Human3.6m dataset result in observed improvements in the MPJPE evaluation
metrics protocol compared with prior state-of-the-art.

CCS Concepts
• Computing methodologies → Machine Learning; Motion Processing; Virtual Reality;

1. Introduction

In the fields of virtual reality (VR) and computer vision, real-time
tracking is crucial for recovering accurate 3D pose data. Human
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joint pose data is commonly captured using multi-camera or single-
camera setups integrated with AI algorithms to obtain depth infor-
mation and directly recover pose key points and joint orientations.
Nevertheless, challenges such as limited sensor range, occlusion,
and latency persist in tracking 3D pose data. In order to improve
immersion and engagement in patterned motion scenarios, there
is a high demand for techniques that minimize latency [KSM24]
[SAKM23] during motion tracking through motion prediction.

Deep learning techniques have significantly advanced the do-
main of human motion prediction [BBKK17] [CSY20]. Among
these, recurrent neural networks (RNNs) have become particu-
larly popular for predicting sequential human pose data [JZSS16]
[FLFM15]. However, when it comes to long-term horizons and pe-
riodic motions, RNNs often struggle due to their inability to ef-
fectively capture long-term history, which is essential for forecast-
ing periodic motion actions. To address this limitation, recent ap-
proaches have incorporated encoders [LZLL18] to better represent
historical information.

Our work introduces a dual-window extended frequency
attention-based human motion prediction technique that utilizes
synthetically generated periodic data based on re-timed foot anchor
placements, as illustrated in Fig. 2. Our method is motivated by the
observation that humans tend to repeat their motions in actions such
as dancing to music beats. To validate this, we focus on the context
of rhythmic motion prediction, where we demonstrate the effective-
ness of our approach by re-timing Human3.6m [IPOS13] to match
these rhythmic patterns. We present results based on analyzing rel-
evant information from significant bones, such as the feet, over a
fixed-length period.

Inspired by previous works [MLSL19], we represent each sub-
sequence of foot anchors in the trajectory space using a Discrete
Cosine Transform (DCT). We then introduce our dual-windowed
extended frequency motion attention as weights for DCT-encoded
motion aggregation into a future motion estimate. To encode spa-
tial dependencies between joints, we combine the motion estimate
with the last observed matching period, using the result as input to
a graph convolutional network (GCN) [FYD∗23]. Our experiment,
as shown in Fig. 4, demonstrates that our approach outperforms
state-of-the-art methods in long-term and short-term periodic mo-
tion prediction on the Human3.6M walking and walking together
datasets. Our work extends [MLS20], specifically improving 3D
pose motion prediction for known periodicity based on foot anchor
placements.

Our main contributions are summarized as follows:

• We analyze the causes of high errors in motion prediction and
synthesize re-timed motion with supervised foot anchor infor-
mation of periodic cycles, such as walking, for the defined use
case of rhythmic motion prediction.

• We achieve superior overall mean per joint position error
(MPJPE) results compared to state-of-the-art methods in ex-
periments on the Human3.6M dataset for forecasting short and
long-term motions by introducing OurDualWindowDCT atten-
tion aligned on a best fit major period of each motion sequence.

• We release an extension of the Human3.6M dataset with ob-
served cyclic foot placement periods https://github.
com/CarouselDancing/DeFT-net

2. Related Work

2.1. Traditional Approaches

Empowered by the probabilistic nature of the task of periodic dance
motion, earlier methods like Boltzman and Hidden Markov Mod-
els [BH00] [THR06] have been employed to predict motion se-
quences. Their learned model synthesizes motion data via style
interpolation and can be driven by 2D video, or script to gener-
ate new choreography for virtual motion-capture style synthesis.
Despite the effectiveness of this procedure, it lacks accuracy and
adaptability, particularly for capturing short and long dependencies
for dynamic contexts like walking and dance sequences.

2.2. Recurrent Model Approaches

Over the years, RNNs have gained popularity in the task of
3D-human motion prediction [CAW∗19]. An encoder-recurrent-
decoder model (ERD) was proposed by Fragkiadaki et al
[FLFM15], where a long short-term memory cell (LSTM) cell op-
erates in a latent space. The work by Jain et. al [JZSS16] adopts
an st-graph skeleton, applying the RNNs as nodes. The work by
[AKH19] replaces dense output layers in the RNN architecture with
structural prediction layers. This technique explicitly models joint
dependencies that follow a kinematic chain. To accurately refine
noisy RNN predictions, the work by [GSAH17] explicitly train a
separate de-noising auto-encoder. All these methods suffer from
the inability to capture long-range motion history.

To address the transition problem between a seed and predic-
tion, Martinez et. al [MBR17] introduced a sequence-to-sequence
(seq2seq) architecture with an input-to-output skip connection. To
alleviate the exposure to bias problem , they also proposed train-
ing the model with the predictions. While this method led to better
performance than previous pose-based works [FLFM15] [JZSS16],
predictions still suffered from discontinuities between observed
frames and predicted frames. Similary, a teacher-forcing ratio ap-
proach was adapted by [PGA18] to expose the model to its own pre-
dictions. Employing a hierarchy of RNNs, the work by [CAW∗19]
presented a seq2seq approach that can be modified to explicitly
model different time scales. Gui et al. proposed adversarial training
to generate smooth sequences [GWLM18]. Ruiz et. al approached
human motion forecasting as a tensor impainting problem and
adapted generative adversarial networks for long-term prediction in
this work [HGMN19]. While this approach improves performance,
the use of an adversarial classifier complicates training making it a
challenge to deploy on periodic dataset with foot anchor encoding.

2.3. Beyond Recurrent Models

Given the drawbacks of RNNs, several works have employed the
use of feed-forward networks as an alternative solution. [BBKK17]
[MLSL19] The work by Butepage et. al [BBKK17] introduced a
fully connected feed forward to process the recent history poses,
investigating techniques to encode temporal historical information
via convolution and exploiting the kinematic tree to encode spa-
tial information. Li et. al suggests a convolutional sequence-to se-
quence model(CNN) processing a two-dimensional pose matrix
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whose column represent the pose at every time step [LZLL18].
The model was employed to extract a pose motion prior from long-
term motion history of frames, which, in conjunction with more
recent motion history, was used as an input to an auto regres-
sive network for future pose prediction. While more effective than
RNN-based frameworks, the manually selected size of the convo-
lutional windows highly influences the temporal encoding of mo-
tion sequences. To address this, Aksan et. al [AKCH21] introduced
a spati-temporal transformer encompassing a fully auto-regressive
approach to model temporal dependencies given the recursive na-
ture of human motion. Cai et. al [CHW∗20] leverage a transformer
architecture on the DCT coefficients extracted from the seed se-
quence and make joint predictions progressively by following a
kinematic tree. Similarly, Mao et. al [MLSL19] encodes joint se-
quence via DCT and train a graph convolutional network (GCN) to
capture/learn inter-joint dependencies. Since the GCN operates on
temporal windows of poses to produce an output, the pose forecast
are limited to a predetermined length. To address this, [MLSL19]
extracted DCT coefficients from shorter sub-sequences in a sliding
window fashion aggregated with a 1D attention block. [GMI23]
introduced a stacked-attention mechanism utilizing synthetic IMU
data to improve long-term dependency handling in dance motion
prediction. This method addresses the limitations of traditional
RNNs by transforming motion dynamics into the frequency domain
using discrete cosine transform (DCT), which better encodes tem-
poral information.

Our work is related to these approaches, but differs in two as-
pects. First, windowed inputs we introduce a time beat signal based
on foot anchor pose information to the DCT windowed input so our
model can learn periodic motions of short and long term history in
the frequency domain. We then introduce a dual-window extended
frequency model to pay attention to periodic motions.

2.4. 3D-based Human Motion Capture Datasets

Human3.6M represents a significant advancement in human pose
estimation by providing a large-scale dataset of 3.6 million accurate
3D human pose motions introduced by Ionescu et. al [IPOS13].
This dataset, much larger than previous ones, was created by
recording 11 subjects (5 female and 6 male) from four different
viewpoints, covering a wide range of typical human activities such
as taking photos, talking on the phone, and eating. It includes syn-
chronized images, motion capture, and depth data, along with accu-
rate 3D body scans of the subjects. A unique feature of this dataset
is its controlled mixed reality scenarios, allowing the study of hu-
man models under various conditions, including camera movement
and occlusion. The dataset also includes extensive statistical mod-
els and detailed evaluation baselines, demonstrating its diversity
and potential for future research.

AMASS stands as a groundbreaking development in the field
of computer vision and motion analysis. In contrast to existing
motion capture (mocap) datasets, which are often limited in size
and scope, introduced by Mahmood et. al AMASS amalgamates
15 different optical marker-based mocap datasets into a singular,
extensive collection. [MGT∗19]. This is achieved through a novel
method, MoSh++, which converts mocap data into detailed and
realistic 3D human meshes. These meshes are represented by the
SMPL model, a widely recognized framework known for its stan-

Figure 2: A skeleton-grid comparison of the fixed DCT motions
from the HistRepeatDCT method [MLS20] and our re-timed dual
window extended DCT motions for test subject 5 walking together
synchronised with right foot anchor placements. The fixed DCT mo-
tion sequence is shown as blue, and our dual window extended DCT
motions as green skeleton. Note that the foot placement for our re-
timed motions match exactly with fixed DCT motions at the last foot
anchor frame.

dard skeletal representation and fully rigged surface mesh, ensur-
ing consistency and wide applicability. Mosh [LMB14] is versatile,
accommodating various marker sets and capturing intricate details
like soft-tissue dynamics and hand motions. Its accuracy and per-
formance are fine-tuned using a new dataset of 4D body scans,
recorded in conjunction with marker-based mocap. AMASS sets
a new standard for human motion datasets with its rich compila-
tion of over 40 hours of motion data, encompassing more than 300
subjects and over 11,000 motions.

Motorica. Perez et al. [ANBH23] [VPHB∗21] introduced a rich
and diverse compilation of motion capture and audio recordings
dedicated to various dance styles, totaling 6 hours. The data is
standardized in BVH format and aligned to a single skeleton struc-
ture for consistency [VPHB∗21]. A high-tech optical marker-based
system collected it at 120 frames per second. The dataset covers
four sessions, each with a unique style focus. The first session
captures intricate street dance styles, emphasizing detailed finger
movements. The second session shifts to casual dancing, set to a
backdrop of pop music, though it omits the detailed finger motion
capture found in other parts. In the third session, the spotlight is on
vintage jazz dances, with an attempt to capture finger motions us-
ing specialized gloves, albeit with some quality issues due to sensor
drift. The final session blends street dance styles with jazz, employ-
ing a simplified approach to finger motion capture. Overall, this
dataset stands out for its comprehensive range of dance styles and
meticulous approach to capturing motion, especially the varying
levels of finger motion detail, making it an invaluable resource for
digital dance movement analysis and research practice [JZSS16].

For the purposes of our experiment and validation, we select
walking and walking together actions for 11 subjects in the Hu-
man3.6m dataset.

3. Method Overview

Our work introduces a unique approach to improving human mo-
tion prediction by incorporating periodic patterns and adapting
a dual window of poses Zi. Each Zi consists of two concate-
nated slices Si and Si+p+offset from the motion history S1:N =
[s1,s2,s3, . . . ,sN ], where p represents the period and offset allows
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Figure 3: Overview of DeFT-Net. Our re-timed DCT input poses are shown within the solid red boxes with the dual window extended history,
and the predicted poses are shown within dotted green boxes. The last observed poses are initially used as query. For every consecutive poses
in the history (key ), we compute an attention score to weigh the dual window DCT coefficients (values) of the corresponding sub-sequence.
The weighted sum of such values is then concatenated with the DCT coefficients of the last observed sub-sequence to predict the future. This
comprises the transformer model of OurDualWindowDCT.

flexibility in adjusting the relative positions of these slices. Our
technique captures long-term temporal dependencies by taking into
account different periods within human motion data, thus enhanc-
ing our model’s ability to forecast future poses with an improved
performance. As shown in Figure 2, we synthesize 3D pose data
by interpolating frames containing motion foot anchor information
from natural walking sequences in the Human 3.6M dataset. We
then apply spherical interpolation to handle pose rotations and lin-
ear interpolation for pose translations to ensure smooth periodic
motions. Since future frame forecasting from past sequences is cru-
cial, our technique draws parallels with approaches such as those
utilizing Discrete Cosine Transform (DCT) to encode motion, sup-
press high frequencies, and smooth jittery motions as seen in prior
work [MLSL19, MLS20]. As the focus of our work is to adapt the
attention model to periodic motion cycles, we fold the tensors that
hold pose information to learn smooth motion transitions to form a
dual-window stack model for improved short and long-term motion
forecasting.

3.1. Foot Anchor Frame Interpolation

As our goal is to learn from periodic walking sequence motions
and forecast future pose motions, similar to Cao et. al [CGM∗20],
we rely on frame annotation based on the right foot placement at
every nth given frame. For periodic actions i.e walking and walk-
ing together, linear interpolation is applied to the root joint. As
presented in equation 1, we compute a weighted average between
the translation vectors of two key frames. Similar to [Kap15], we
define a spherical path between the rotations and create key rota-
tions from the rotation vectors of two consecutive frames as seen
in equation 2 by spherical linear interpolation. We combine both
interpolation techniques to achieve periodic dataset based foot an-

Figure 4: From left-to-right, a plot visualisation of the Mean Per
Joint Position Error (MPJPE) across 72 frames for training on
both the History Repeats Itself DCT encoded motions and our dual-
window extended DCT motion sequences

chor frame placements and pass these in an encoded DCT fashion
to our dual window extended frequency transformer to learn from.

lerp(p1, p2, t) = (1− t)p1 + t p2 (1)

slerp(q1,q2, t) =
sin((1− t)θ)

sin(θ)
q1 +

sin(tθ)
sin(θ)

q2 (2)

3.2. Dual Window extended Frequency Attention Model

As our main aim is to take into account periodic pose sequences, we
adapt a dual window by folding/stacking the tensors that hold the
input features 3D pose sequence vectors along the bone axis. We
then compute attention scores based on the key and query by feed-
ing the encoded poses into a pytorch feed-forward function. Simi-
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Figure 5: Training Loss Comparison plot for 50 epochs: Dual win-
dow extended DCT vs History Repeats Itself fixed window DCT
method [MLS20].

Figure 6: Validation Loss Comparison plot for 50 epochs: Dual
window extended DCT vs History Repeats Itself fixed window DCT
method [MLS20].

lar to Mao et. al [MLS20], we exploit motion attention as weights
to aggregate our dual window extended DCT-encoded motion his-
tory into an estimate of future pose motion. This estimate is then
combined with the latest observed motion, and the result then acts
as input to a graph convolutional network (GCN), which lets our
model better encode spatial dependencies between different joints.
Our motion attention-based approach consistently outperforms the
state-of-the art on short-term and long-term motion prediction by
training a single unified model for both settings.

Figure 7: MPJPE Comparison plot for 50 epochs: Dual window
extended DCT vs History Repeats Itself fixed window DCT method
[MLS20]

Walking Walking Together

Frame No. 1 3 5 8 9 10

HistRep [MLS20] 5.68 17.28 27.62 40.31 43.69 46.81
Ours 5.45 16.78 26.50 38.41 41.69 44.78

Table 1: Following baseline setting MPJPE Batch evaluation re-
sults for test Subject 5 comparison on our re-timed interpolated
vs original History Repeats Itself DCT [MLS20] method with Hu-
man3.6m datasets for predicting human motion at various frames
for activities walking and walking together

4. Experimental Results and Discussion

Following baselines setting [TMLZ18] [LZLL18], we present re-
sults for short-term and long-term predictions. On the H3.6M
dataset, our dual-window DCT model is trained using a history
of 50 frames to forecast the future 10 frames. Noticeably in Fig.
4, lower errors are observed at foot anchor frames where the right
foot placements occur, and higher errors are noted when the feet
are together during the mid-point of the cycle.

The results from the comparison of HistRepeatDCT and OurD-
ualWindowDCT, highlight a trade-off between generalization and
accuracy in joint position prediction. As shown in Fig 6, HistRe-
peatDCT exhibits a more stable and lower validation loss, suggest-
ing it generalizes better to unseen data but is still comparable to
our OurDualWindowDCT. This stability is crucial in ensuring that
the model performs consistently well across different datasets and
does not overfit to the training data. However, the higher MPJPE
presented in Fig. 7 indicates that HistRepeatDCT is less accurate
in predicting 3D joint pose positions, which can be a significant
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drawback for tasks requiring precise motion forecasting, such as
rhythmic motion prediction.

OurDualWindowDCT demonstrates superior performance in
terms of training loss in Fig. 5 and MPJPE in Fig. 7, indicating
better performance when capturing joint poses. This is essential for
patterned human motion prediction, where precise joint movements
are critical. However, the higher and more fluctuating validation
loss in Fig. 6 points to potential overfitting and less reliable perfor-
mance on new data which may also indicate limitations of the range
of data used in training. Overall, despite its validation challenges,
OurDualWindowDCT’s lower MPJPE in our test results suggests it
is a more robust model for rhythmic human motion prediction.

5. Conclusions and Future Work

In the paper, we have introduced a dual-windowed based mo-
tion attention model that exploits historical pose information ac-
cording to the similarity between the current pose motion context
and the cyclic sub-sequences in the pose motion history. Our ap-
proach achieves state-of-the-art performance in predicting rhyth-
mic motion by re-timing the Human3.6m dataset based on foot an-
chor placements. Furthermore, our experiments have demonstrated
that our network generalizes to previously unseen walking and
walking-together motion sequences. To leverage the strengths of
OurDualWindowDCT while mitigating its drawbacks, further tech-
niques such as cross-validation, regularization, or data augmenta-
tion would be employed to enhance its generalization ability while
maintaining its predictive accuracy. We aim to further investigate
the use of a stack motion attention model to discover human mo-
tion patterns in body parts, such as legs, to get more flexible atten-
tion for a DCT history of multiple pose periods and consideration
of non-linear re-timing approaches.
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