
EG UK Computer Graphics & Visual Computing (2024)
A. Slingsby and D. Hunter (Editors)

Real-time Data-Oriented Virtual Forestry Simulation for Games

B. Williams1 , T. Oliver1 , D. Ward1 and C. Headleand1

1Staffordshire University Games Institute
School of Digital, Technologies, Innovation and Business

Staffordshire University, UK

Figure 1: The growth and development of a virtual forest, simulated in real-time, utilising our optimisation strategy.

Abstract

The current frontier of virtual forestry algorithms remain largely unoptimised and ultimately unsuitable for real-time applica-
tions. Providing an optimisation strategy for the real-time simulation of virtual forestry would find particular utility in some
areas, for example, in video games. With this motivation in mind, this paper presents a novel optimisation strategy for asym-
metric plant competition models. In our approach, we utilise a data-oriented methodology with spatial hashing to enable the
real-time simulation of virtual forests. Our approach also provides a significant improvement in performance when contrasted
with existing serial implementations. Furthermore, we find that the introduction of our optimisation strategy can be used to
simulate hundreds of thousands of virtual trees, in real-time, on a typical desktop machine.

CCS Concepts
• Computing methodologies → Artificial life; Parallel algorithms; Computer graphics; • Software and its engineering →
Interactive games;

1. Introduction

Procedural Content Generation (PCG) has been applied in recent
years to automatically generate a wide range of content. There are
several benefits to the automatic generation of content in video
games. For example, a primary motivator for its usage is the signif-
icant reduction in development time in contrast to manual design
approaches. The benefit is emphasised when modelling systems
with thousands of individual components, such as virtual forestry,

which ordinarily would take a substantial amount of time to create.
The possibility of generating complex systems inspired the earli-
est uses of PCG in games, circumventing the hardware limitations
of early computer systems. One of the first adopters of PCG was
the space-based trading game Elite, which automatically generated
in-game solar systems with thousands of stars [HMVDVI13]. This
motivation has inspired several authors to explore and develop so-
lutions focused on the generation of virtual forestry in games. The
majority of approaches focus on stochastic point sampling, which

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/cgvc.20241218 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-4766-9337
https://orcid.org/0009-0001-2991-7192
https://orcid.org/0009-0009-9453-6896
https://orcid.org/0000-0002-4974-9536
https://doi.org/10.2312/cgvc.20241218


B. Williams, T. Oliver, D. Ward & C. Headleand / Real-time Data-Oriented Virtual Forestry Simulation for Games

in some cases has shown to be successful in generating believ-
able forestry [WRH19]. These distribution methods offer a com-
putationally efficient solution for forestry generation, at the ex-
pense of model accuracy. This is contrary to plant competition
models, which simulate the individual growth, spread, and death
of trees in a plant community. Such algorithms model factors such
as equidistant spacing of trees as emergent properties of the simula-
tion itself. For example, Field of Neighbourhood (FON) based ap-
proaches [BWB∗04] embody equidistant spacing by enforcing spa-
tial competition rules. These types of bio-inspired models are com-
putationally expensive due to the interdependence of forest growth,
but provide a high-fidelity model of forest development.

A limiting factor of existing plant competition models and their
adoption concerns their computational cost. For example, video
games are inherently real-time experiences and demand minimal
computational overhead in algorithm design. Whilst several algo-
rithms exist for simulating forest growth, the majority are not ex-
plored in the context of games. Instead, most papers surrounding
this topic consider forest growth as an offline model, which has
use cases in ecology-based research. However, considering these
growth models in real-time simulation has largely been overlooked.
Current plant competition models are largely unsuitable for in-
game usage, due to their computational expense and frame latency.
As such, the urgency for a real-time, efficient, and optimised forest
simulation approach is stressed. It is with this pressing need in mind
that this paper explores the creation of a highly efficient optimisa-
tion strategy for FON-based forest growth models in the popular
Unity 3D games engine. In our strategy, we leverage the power of
the relatively new Entities package, utilising the Entity-Component
System (ECS) for the parallel simulation and generation of virtual
forestry. Optimisation is largely performed through the adoption of
a data-oriented ECS, the application of spatial hashing, the vec-
torisation of simulated entities, and the mass parallelisation of the
agent-based simulation using the Burst compiler and Job system.
We also explore the consideration of real-time and continuous for-
est growth, which remains an unexplored area in video games.

It is worth noting that in our previous work we have consid-
ered the procedural generation of forestry in detail. In our ini-
tial work we introduced and evaluated simple point distribution
methods against plant competition models in terms of believabil-
ity [WRH19]. Amongst several interesting findings, we found that
bio-inspired plant competition models generated forestry ranked as
generally more believable [WRH20]. In this paper, we intend to
focus on the optimisation of these plant competition models for
real-time generation.

2. Background

The body of PCG-related literature has grown to consider a wide
range of applications from its inception, such as the automatic syn-
thesis of textures [DLY∗20], real-time generation of entire game
levels [KCR∗23] or the generation of virtual settlements [WH17].
One aspect which has been considered in this area concerns the
generation of virtual vegetation, such as trees or shrubs. In early
work, Lindenmayer et al. pioneered the use of L-Systems to model
the growth and dichotomous branching structure of algae plant sys-
tems [PH13]. L-Systems were quickly adapted by Aono and Kunii

to model the monopodial branching structure of trees, producing
the earliest generated tree images with an L-System [Pru86,AK84].
Since their inception, L-Systems remain a common approach for
the generation of virtual tree structures. In recent research for ex-
ample, machine learning (ML) algorithms are trained with gen-
erated L-Systems and subsequently used for virtual tree genera-
tion [LLB23]. Another example considers using L-Systems to dis-
tribute virtual fruit on generated trees, a previously unexplored
topic [DeJ22]. However, most generative L-System approaches in
this area continue to target the generation of virtual trees and their
skeletal structure [TTWZ20, Ste23, Ber21]. Some papers have fo-
cused on other aspects of tree generation, such as the procedural
generation of bark-like textures [VRP22] or the generation of com-
plex root structures [LKL22].

Outside the scope of generating individual plants, another topic
concerns the generation of plant communities. This problem was
initially tackled by Reeves and Blau [RB85], who introduced a
novel use of particle systems to model individual trees in a virtual
forest. The approach utilises designer-specified parameters to dis-
tribute trees in a virtual environment. Point distribution methods,
outside of Reeves and Blau’s approach, also prove to be a popular
category of algorithm in the literature. Several papers have shown
their utility in procedurally distributing objects in scenes, including
the distribution of trees and forestry [LD05]. Ecormier et al. [EN-
MGC19] show a recent example of this, using a variance-aware
disk-based distribution model to generate virtual forest scenes.

Other algorithms which model ecological development through
plant competition have been proposed in previous research [FS18].
Plant competition models consider the individual simulation of
plants in an ecosystem. Within these models, the competition be-
tween species is a core focus. One of the initial methods which
adopted this approach was put forward by Bauer et al. [BWB∗04],
in which a field-of-neighbourhood (FON) model is proposed. The
FON is a radius situated around each plant, determining the zone
in which this tree competes with others in the system. If for ex-
ample, two tree’s FON radii overlap, they are considered in com-
petition with each other for resources. An example illustrating this
paradigm can be seen in Figure 2.

aFON bFON

C(a, b) > 0

(a) FON competition

aFON bFON

C(a, b) = 0

(b) No FON competition

Figure 2: A diagram showing FON-based asymmetric competition.
On the left, plants a and b’s FON radii overlap, and they are in
competition for resources. Conversely on the right, a and b’s FON
radii do not overlap, and there is therefore no competition between
the two.

Alsweis and Deussen classify plant competition into two cate-
gories: asymmetric and symmetric competition [AD15]. Symmet-

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



B. Williams, T. Oliver, D. Ward & C. Headleand / Real-time Data-Oriented Virtual Forestry Simulation for Games

ric competition considers that resources are split evenly between
two plants in competition. In contrast, asymmetric competition, re-
sources are split unevenly between the two. In asymmetric compe-
tition, the virtual tree with a larger FON will dominate competitors
with a smaller FON [AD15]. This models canopy coverage occlud-
ing sunlight to younger plant species who are in the vicinity of each
other. Alsweis and Deussen use bio-inspired rules coupled with the
FON model to generate plant systems, using an asymmetric com-
petition model. Lane and Prusinkiewicz [LP∗02] use a similar ap-
proach to generate realistic plant communities. The authors use a
multi-set L-System in the generation of trees in the system. Ad-
ditionally, an approach similar to Alsweis and Deussen’s [AD15]
asymmetric FON model is used, simulating individual trees and
determining competition using a radius-based model.

Simulating forestry via bio-inspired plant competition mod-
els also proves to be a well-researched topic in ecological lit-
erature. The development of simulation software such as Green-
Lab [HDRZ∗03] enables ecologists to study and predict the de-
velopment of plant communities. In recent work, de Reffye et
al. [DRHK∗21] summarises the use of GreenLab over two decades
since its inception, showcasing its use as an effective tool for eco-
logical research. Outside of predicting plant community growth,
some authors have previously utilised GreenLab for procedurally
generating forest scenes. For example, Cournede et al. [CGB∗09]
use GreenLab in a novel method of distributing trees in a virtual
forest scene. Another area concerns the optimisation of real-time
generation and simulation of virtual forest scenes. The motivation
for an efficient method of generating forestry has been stressed
by previous authors, especially in the context of real-time applica-
tions [KGM14]. The optimisation of rendering forestry has been
considered previously in the literature, especially in the context
of games. For example, the SpeedTree SDK is one of the front-
running products used in video games for the real-time generation
and rendering of trees [FJFJ17]. The SpeedTree SDK also enables
the management of millions of individual trees through its Forest
library, enabling real-time usage in games [spe]. However, the opti-
misation steps focus solely on the rendering process; efficient gen-
eration and real-time growth of virtual forestry is not considered
by the library. This is also seen in the literature, with the major-
ity of optimisation approaches focusing on the rendering of large
numbers of tree instances [BN12, RB85, BLZ∗11]. One technique,
for example, uses different Level of Detail (LoD) meshes which
are swapped in real-time depending on camera distance, to dramat-
ically reduce render time [BLZ∗11].

Some researchers have considered the problem of optimising
forest growth and simulation in the literature. For example, Ko-
hek and Strnad [KS15] leveraged the GPU to parallelise the syn-
thesis of 3D tree models and their distribution within an envi-
ronment. The approach was capable of generating realistic forests
with more than 500 trees in a second. The approach however, con-
sumed a large amount of memory, even for smaller forest sizes.
Similarly, Lipp et al. [LWW10] considered the massive paralleli-
sation of generating L-Systems for virtual tree branching. Kohek
and Strnad [KS18] propose a novel method which utilises particle
flow simulation to generate and render forest scenes. The authors,
however, do not consider the problem of optimising plant compe-
tition models. A similar optimisation strategy was later considered

by Carey [Car19], leveraging L-System instancing to optimise the
generation process.

In recent work, Newlands and Zauner [NZ22] present an open-
source tool for generating forest scenes, focusing on the optimisa-
tion of the rendering process. The approach utilises plant compe-
tition models, but does not focus on the optimisation of the algo-
rithm for real-time simulation in games. Closely following on from
the work of Zauner, Badr et al. [BHRdA24] utilise a data-driven
approach to massively optimise the visualisation task of real-world
forestry. However, the authors only consider the optimisation of the
rendering process. On a similar note, Kenwood et al. [KGM14] in-
troduce an efficient and highly optimised approach for generating
forestry scenes, but do not consider simulating plant competition
and forest growth. Nunes et al. [NFP22] showcase a novel method
of synthesising rich forest scenes to train an ML-based algorithm.
The authors consider some optimisation steps, but ultimately over-
look the simulation of trees in a plant competition model. Gari-
fullin et al. [GFK21] present an optimisation method for modelling
large-scale plant communities, such as forestry. The optimisation
step uses approximate instancing, in which plants are grouped to-
gether and instanced throughout the scene. Despite the prevalence
of plant competition simulations in the literature, there are cur-
rently no real-time optimisation strategies focusing solely on the
simulation of plants. The majority of optimisation strategies either
focus on single-pass generation [KS18, Car19] or optimising the
rendering process [KGM14, BHRdA24]. Providing optimisations
for simulating plant communities would enable several benefits to
researchers and game developers alike. For example, real-time sim-
ulation would offer the possibility of concurrent forest growth in
games, enabling more adaptive and immersive environments. Pro-
viding real-time optimisations would also make the study of plant
competition models easier, fostering research in this area.

3. Optimisation Strategy

Our optimisation strategy primarily focuses on the application of a
data-oriented Entity Component System (ECS) to massively paral-
lelise FON-based plant competition algorithms. The Unity games
engine was utilised for two reasons. Firstly, Unity is a commonly
used and front-running games engine both in the literature and
the commercial sector. Secondly, Unity offers an attractive built-in
data-oriented technology stack (DOTS) for optimising large-scale
simulations such as simulating virtual forestry. To further reduce
simulation latency, we leveraged the Burst compiler to translate C#
Intermediate Language (IL) bytecode to highly optimised native
instructions. The Unity C# job system was also utilised to con-
currently execute parts of the simulation and perform large-scale
optimisation. A diagram highlighting the usage of the job system
within the ECS architecture is shown in Figure 3.

In our optimisation strategy, the plant competition simulation is
split into three primary tasks, following the Lane and Prusinkiewicz
model [LP∗02]:

1. Succession: Simulated trees grow and age each tick of the sim-
ulation. Once trees reach a certain age they die, and are subse-
quently removed from the simulation.

2. Plant propagation: Trees reproduce similar to the method pro-
posed by Alweis and Deussen [AD15]. Child trees are spread

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



B. Williams, T. Oliver, D. Ward & C. Headleand / Real-time Data-Oriented Virtual Forestry Simulation for Games

 Job 2

 Job 1

Entity

TreeComponent

Entity

TreeComponent

Entity

TreeComponent
...

Entity

TreeComponent

Entity

TreeComponent

Entity

TreeComponent

...

.
.
.

Thread #1

Thread #2

 Job N

Entity

TreeComponent

Entity

TreeComponent

Entity

TreeComponent

... Thread N

Figure 3: A diagram showcasing the utility of the Unity C# job sys-
tem, enabling the easy batching of entity processing across several
threads. In the ECS, entities are stored contiguously in memory, en-
abling easy concurrent vectorisation for parallel processing.

locally around the parent tree, helping to cluster trees together
of the same species. Trees can only spread their seed when they
reach a mature age.

3. Self-thinning: This step embodies the competition between
plants. If the FON of one plant is within distance of another,
the two plants are considered in competition. The plant with a
larger FON ultimately dominates the smaller plant, which is re-
moved from the simulation.

These steps embody the bio-inspired plant competition model
discussed in our previous work [WRH19]. Trees are individually
simulated and plant competition is assessed using Alsweis and
Deussen’s [AD15] asymmetric competition rule:

I(a,b) =


C(a,b) if aFON > bFON

C(a,b) or 0 if aFON = bFON

0 if aFON < bFON

(1)

where C(a,b) gives the competition/FON-overlap between the
two plants a and b. This competition rule embodies an uneven split
of resources between the two plants, based on which FON radius
is larger. The plant with the smaller FON radius will be dominated
by its competitor, reducing its access to resources and its eventual
death, upon which it is removed from the simulation. In the sim-
ulation, a wind direction and magnitude are also present, which
are randomised each tick, as in our previous work [WRH19]. This
variable is present in the simulation to more accurately model the
environmental forces involved in seed distribution. The asymmet-
ric plant competition model used in our simulation closely follows
Alsweis and Deussen’s approach [AD15]. Competition is repre-
sented using FON radii, which is directly correlated to a tree’s age
– larger trees have larger FON radii, and dominate smaller trees for
resources. Other environmental variables, such as soil acidity or
air quality are not taken into consideration. Instead, our algorithm

provides a simple model of plant growth in a virtual environment.
We plan to investigate more comprehensive models which consider
biological factors in future work.

3.1. Entity-Component System Architecture

The Entities package was used with Unity 2022.3.4f1 to provide
access to the in-engine data-oriented technology stack and ECS.
The overarching paradigm of ECS is heavily focused on data-
orientation, organising the simulation around the memory footprint
of simulated entities and their archetypes. Entities can have at-
tached components, which represent data associated with entities.
Unlike the traditional object-oriented paradigm, entities are sim-
ulated holistically by a system, which govern the simulation for a
category of an archetype of entities. In our ECS architecture, virtual
tree entities were tightly packed in contiguous memory to a) avoid
internal memory fragmentation and b) enable easy vectorisation for
concurrent parallelisation with the job scheduling system.

A single ECS system provides the simulation for the vir-
tual forest, which acts as a container for all simulated tree en-
tities. Two unmanaged ECS components, ForestComponent
and TreeComponent were used to represent simulated trees and
forests in the simulation. Entities with an attached TreeCompo-
nent instance are selected by the overarching system and up-
dated every tick of the simulation. Component tags were avoided
in classifying mature or dead trees, to avoid structural changes
and improve overall efficiency. Furthermore, entities with at-
tached TreeComponent instances are associated to overarching
ForestComponent instances via an unsigned integer index. A
diagram outlining the main system used for forest simulation can
be seen in Figure 4.

To provide concurrent structural changes, i.e. adding or remov-
ing virtual trees from the simulation, an Entity Command Buffer
(ECB) data structure was used. The use of an ECB enables thread-
safe structural changes to be recorded across parallel jobs and
played back at a safe state. This enables jobs to run concurrently
across several threads, eliminating the need for serial execution and
improving simulation performance.

3.2. Jobs

As seen in Figure 4, a number of separate jobs are scheduled to
perform the steps of the plant competition algorithm. These jobs
are scheduled in parallel using the Unity C# job system to mul-
tithread the solution. Whilst jobs are computationally distributed
across threads, jobs are sequenced in serial. For example, Job #1 is
distributed in parallel but will always finish before Job #2. This en-
ables the safe synchronisation of entities within the ECS at a given
point in time. Jobs are parallelised by inheriting from the IJobEn-
tity class, enabling jobs to be automatically distributed across
entities. The first job to run each tick, AssignSpatialIn-
dexJob, iterates over all tree entities in parallel and assigns them
a hash value based on their position. More details of this pro-
cess are discussed in the following section. The next scheduled
job, CullDeadTreesJob, simply iterates over each tree entity
currently flagged as dead. It then removes them from the simu-
lation. This process is separated into a scheduled job as it en-

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



B. Williams, T. Oliver, D. Ward & C. Headleand / Real-time Data-Oriented Virtual Forestry Simulation for Games

ForestUpdateSystem

OnUpdate

Create NativeParallelMultiHashMap<int, int>

Build entity queries & ECB

Run jobs AssignSpatialIndexJob : IJobEntity

Hashes all entity positions into the created 
NativeParallelMultiHashMap<int, int>

CullDeadTreesJob : IJobEntity

Ages trees, flags them for removal, and removes 
dead trees from the simulation prior to 
propogation

Parallel

SpawnTreesJob : IJobEntity

Propogates new trees in the simulation

FONCompetitionJob : IJobEntity

For each entity, uses hashmap for neighbourhood 
lookup and determines plant competition. 
Removes younger plants occluded from canopy 
cover.

Parallel

Parallel

Parallel

Frame cleanup

Figure 4: An overview of the ForestUpdateSystem, which
performs the virtual forest simulation. Each job is scheduled in
sequence but distributed in parallel, leveraging multi-threading to
significantly optimise the batch processing of virtual trees.

ables the safe replaying of large structural changes to the ECS at
a well-defined point. This job is followed by the scheduling of the
SpawnTreesJob, which selects all mature plants and propogates
new plants from their position. For each mature tree, a normalised
probability is randomly selected as p ∈ [0,1]. If p < t, where t is
simulation-wide propogation probability, then the tree sows its seed
and a new plant is added local to the tree’s position. A new pro-
pogated tree position p′ is selected with p′ = p+wds – where p
is the parent tree position, w is the current wind vector and ds is
the randomised forest-wide spread distance for new plants. The fi-
nal job, FONCompetitionJob, iterates over trees and considers
others local to itself for competition. A tree uses its spatial hash
with a thread-safe hashmap to assess which trees are local to itself.
Within this neighbourhood, trees within the tree’s FON radius are
considered for competition utilising Equation 1. If this tree’s ac-
cess to resources is considered to be dominated by another other
plant, i.e. I(a,b) = 0, then the tree a is flagged as dead. It is then
subsequently removed from the simulation in the next tick.

In addition, an initial job is scheduled prior to the simulation
start. This job, InitialSpawnTreesJob, spawns an initial
number of trees in the environment to start the simulation. Posi-
tions for these trees are pseudo-randomly selected within the world
space. This step is carried out as forest growth is predicated on the
existence of trees initially. Finally, a separate job named Update-
ForestJob updates forest-wide simulation parameters, such as
the wind direction and speed after each tick.

3.3. Spatial Hashing for Entity Neighbourhoods

A crucial bottleneck in Lane and Prusinciewicz’ [LP∗02] plant
competition model concerns the individual competition between
trees. Each tree in the simulation must determine which trees are
within its FON radius, to assess if it is in competition for resources.
The naive approach to this solution yields an algorithm with time
complexity O(n2), as each simulated tree potentially looks up ev-
ery other tree in the simulation. In our solution, we utilise a uni-
form spatial hashing algorithm similar to Pozzer et al. [PdLPH14]
for quantising an entity’s position to a spatial grid index. An un-
managed NativeParallelMultiHashMap is used to provide
a thread-safe concurrent map which entities can access to determine
their local neighbourhood. It is worth noting that although virtual
forestry typically occupies 3D space, our spatial hashing approach
and simulation works in 2D; tree entities are simulated on the xy
plane. This approach is taken as, firstly, it reduces the memory foot-
print of the simulation, namely the hashmap and ECS components.
Secondly, this type of simulation has been used throughout the ma-
jority of forest simulation approaches [LP∗02, AD15, WRH19]. It
is worth noting however that this step is a simplification of real tree
growth; restricting the environment to 2D could potentially impact
the accuracy of the growth model. For example, previous work has
shown that the altitude of trees can affect their growth and com-
petition with other plants [CA07]. Examining this variable and its
impacts on perceived quality could be another area of future re-
search.

An entity’s position p ∈ R2 is hashed to a spatial index in two
steps. Firstly, the grid delta value g is computed as g = w/n where
w is a 2D vector containing the world boundaries, and n is the num-
ber of subdivisions for the uniform grid. Then, the position p is
hashed into a 2D index with I(p) as seen in Equation 2.

I(p) =
(⌊

px
gx

⌋ ⌊
py
gy

⌋)
(2)

Finally, the 1D hashed index H(p) is calculated as H(p) =
I(p)x + nI(p)y where n is the number of grid subdivisions. Spatial
indices are assigned through a parallel scheduled job every tick, as
seen in Figure 4.

In addition, unmanaged components are utilised in our opti-
misation approach to represent the state of the simulation. Each
ForestComponent instance contains forest-wide parameters
used throughout simulation. For example, the minimum/maximum
spread distance when plants propogate, the world size, wind direc-
tion, and so forth. In contrast, each TreeComponent represents
an individual tree in the simulation along with its current state. A
full list of data associated with individual simulated trees can be
found in Table 1.

4. Results

Our optimisation strategy enables the real-time simulation of vir-
tual forests with large (n > 100,000) entity counts. Trees are visu-
alised with 3D meshes in a 2D distribution along the xy plane. Trees
are oriented to [0,0,1]T , the normal of the plane. Height is not con-
sidered in the visualisation process, though sampling according to

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



B. Williams, T. Oliver, D. Ward & C. Headleand / Real-time Data-Oriented Virtual Forestry Simulation for Games

a height-map may produce visually interesting results. In addition,
colours can be assigned to the simulated trees: lighter shades in-
dicate young trees, whereas darker colours indicate mature trees.
Running the algorithm on a workstation with 32 GB of RAM, Intel
Core i7-12700 processor and NVIDIA GeForce RTX 3080 GPU,
the growth and rendering of the virtual forestry is performed in
real-time (≈ 60 frames per second). Some examples showcasing
the simulation over time are shown in Figure 5. Parameters defining
the plant competition can be tweaked to simulate forests of different
shapes and sizes. The difference in parameterisation is emphasised
when contrasting Figure 5a and Figure 5b. In Figure 5a, a small
propogation distance and high spread chance is used to promote
tightly clustered forests with clearings. However, in Figure 5b, the
spread distance is heightened to create sparser distributions of trees.
Finally, in Figure 5c, a small propogation probability is used. Plants
are given a short period from maturity to death, giving a small win-
dow of opportunity to propogate within. This results in the emer-
gent behaviour of periodic cycles of growth, similar to seasons. In
addition, our optimisation strategy can be utilised in real-time pho-
torealistic 3D scenes, as seen in Figure 6. The ability to simulate re-
alistic forestry at run-time could be of particular use in video games
and the development of virtual environments.

5. Analysis

To examine the performance benefits of our optimisation strategy,
a performance-based quantitative analysis was performed. In this
study, the impact of spatial hashing and parallelisation on simula-
tion frame time was considered in detail.

5.1. Spatial Hashing

To determine the role of spatial hashing in our optimisation strat-
egy, the interframe latency time (delta time) was recorded and anal-
ysed. The number of spatial subdivisions for hashing was incre-
mentally changed and simulated for 1,000 simulation ticks. For
each run, the subdivision count was incremented by 1, in the in-
clusive range [1,256]. Following the 256th iteration, the application

Table 1: A detailed outline of each member of the TreeCompo-
nent, used in representing an individual tree’s current simulated
state.

Member Type Description
position float2 The position in the world of this

tree.
age uint The age of the tree in the simu-

lation.
deathAge uint The predetermined age at which

this tree will die.
matureAge uint The predetermined age at which

this tree will be able to pro-
pogate.

needsCull bool Whether the tree needs culling
in the next tick.

hash int The 1D spatial index assigned
to the entity.

(a) t = 100, t = 500, t = 1000

(b) t = 150, t = 250, t = 350

(c) t = 300, t = 400, t = 500

Figure 5: The simulation and development of three virtual forests
at various time values t. The simulation in each case runs at ap-
proximately 60 FPS on a desktop machine, with a peak entity count
of 249,771.

exited and data was serialised into a CSV format for further analy-
sis. The delta time (time between each simulation tick, in seconds)
was recorded and saved alongside the entity count and number of
subdivisions. Following 1,000 ticks of a simulated run, the virtual
forest was culled and reset. The pseudo-random number genera-
tor was additionally reset to an initial state, so subsequent forests
would be identical in their seeding and growth. The simulation was
run under this set-up a total of five times. Values from the five runs
were averaged together to reduce data variance and strengthen the
observed effects. Furthermore, the simulation was run on a desk-
top PC with 32 GB of RAM, a 12th generation Intel Core i7-12700
(2.10 GHz) processor, and NVIDIA GeForce RTX 3080 GPU. Jobs
were scheduled in parallel as described earlier in this paper.

Our findings highlight the role of spatial hashing in drastically
increasing performance for plant competition models. An example
of this can be seen in Figure 7, in which the subdivision count is
contrasted to the simulation tick time. As the plot shows, the frame
render time is substantially lowered when the subdivision count g
satisfies g > 1. This shows that spatial hashing, in-line with pre-
vious research [FWZS11], dramatically optimises processing time
throughout simulation. It is worth noting that the optimal region
of subdivisions for this particular simulation appears between the
range 30 < g < 75, and slowly increases as the subdivision count
increases. However, in comparison to an approach which performs
no local neighbour checks via a spatial hashmap (g = 1), perfor-

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



B. Williams, T. Oliver, D. Ward & C. Headleand / Real-time Data-Oriented Virtual Forestry Simulation for Games

(a) t = 100

(b) t = 200

Figure 6: The simulation of a virtual forest in 3D space utilising
our approach, at two time steps t = 100 and t = 200. Our approach
is capable of generating and rendering 3D forest scenes at run-
time.

0 15 30 45 60 75 90 10
5

12
0

13
5

15
0

16
5

18
0

19
5

21
0

22
5 24

0 25
5

Grid subdivision count

10-2

10-1

M
ea

n 
fr

am
e 

de
lta

 ti
m

e

Uniform grid subdivision count vs Mean frame time

Figure 7: A plot showing mean frame simulation time against sub-
division count. Note that the y-axis in this plot is logarithmic.

mance is greatly increased when g > 1. Comparing the means of
non-spatial hashing (g = 1, µ = .195,σ = .143) against the most
optimal spatial hashing run (g = 73, µ = .004,σ = .001) shows a
potential .195/.004 = 48.75 times reduction in frame delta time
with spatial hashing. The difference is statistically significant be-
tween the two groups, t(1998) = 42.734, p < .001. A similar effect
can be observed in Figure 8, with substantially lower frame pro-
cessing times found for cases where spatial hashing (g > 1 in the

0 2000 4000 6000 8000 10000 12000 14000
Entity count

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sm
oo

th
ed

 fr
am

e 
de

lta
 ti

m
e

Entity Count versus Frame Time for Subdivision Count (g)

g = 1
g = 2
g = 4
g = 8

Figure 8: A plot showing the relationship between entity count
and recorded inter-frame latency, for a variety of grid subdivision
counts g.

plot) is utilised. Furthermore, a significant positive correlation can
be seen between the number of simulated entities and processing
time, r = .41, p < .001, N = 8000. The correlation between these
two variables highlights the need for efficient real-time plant com-
petition models – high numbers of entities are associated to high
interframe latency. This is especially emphasised in the case of vir-
tual forestry, where there may be hundreds of thousands of entities
at any given time.

5.2. Parallelisation via Data-orientation

A similar analysis was performed to investigate the impact of util-
ising an ECS in our optimisation strategy. Unlike the previous anal-
ysis, two groups were used to determine the role of ECS in optimi-
sation. Both groups did not utilise spatial-hashing throughout the
simulation, to eliminate this as a variable in the recorded data. In
the first group, the virtual forestry model was implemented using
a serial approach, with no ECS or parallelisation via the job sys-
tem. In the second group, the model leveraged the in-built ECS and
made use of parallel job scheduling, as discussed earlier. The inter-
frame processing time and entity count was recorded across 1,000
simulation ticks, similar to the previous analysis. This was carried
a total of five times under both group conditions, and the recorded
data was averaged together to reduce variance.

Some interesting results were found through the comparison be-
tween the serial and parallel versions, which can be seen in Fig-
ure 9. Firstly, it can be seen that the use of Unity’s ECS system
provides a dramatic increase in performance in comparison to a
non-ECS equivalent. In the serial version, frame delta time rapidly
increases throughout the simulation. This is likely due to the in-
creased number of entities over time as trees propogate in the sim-
ulation. The plot does show an interesting effect however; for low
numbers (n < 100) of simulated entities, there are marginal differ-
ences between a non-ECS and ECS approach. This indicates that

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



B. Williams, T. Oliver, D. Ward & C. Headleand / Real-time Data-Oriented Virtual Forestry Simulation for Games

0 100 200 300 400 500 600 700 800 900 1000
Frame number

0

2

4

6

8

10

12

14

16

18

Fr
am

e 
de

lta
 ti

m
e 

(s
)

Frame time comparison, Serial vs Parallelised

Parallelised
Serial

Figure 9: A comparison between a serial (non-ECS) and parallel
(ECS) implementation, for the first 1,000 frames of the simulation.
Notice frame latency initially spikes and linearly increases for the
serial version; whereas this is not observed for the parallelised im-
plementation. Instead, the delta time for the parallelised version
increases at a shallower gradient in comparison to the serial im-
plementation.

ECS may be useful for simulating large populations of entities, but
unsuitable for smaller scale simulations. Comparison of the means
between the non-ECS (µ = .7.057, σ = 5.534) and ECS (µ = .321,
σ = .241) approaches shows a statistically significant difference,
t(1998) =−38.453, p < .001. This effect indicates that the use of
an ECS reduced frame delta time, on average, by approximately
7.057/.321 = 21.98 times. Further work could investigate if this
effect is present with the inclusion of a spatial hashing algorithm,
i.e. g > 1. It could be the case that the inclusion of spatial hashing
results in a different observed relationship between frame latency
and simulation time. For example, the difference in latency between
serial and parallel implementations could be lower when g > 1.

6. Conclusion

This paper has introduced a novel approach to significantly opti-
mise FON-based plant competition models for real-time applica-
tions. In the approach, a combination of Unity’s data-oriented tech-
nology stack, Unity’s Entities package, uniform spatial hashing and
job parallelisation are utilised to significantly decrease interframe
simulation latency. The optimisation strategy discussed in this pa-
per enables the efficient simulation of massive virtual forests for
in-game scenes, a previously unsuitable task for real-time video
games. In our findings, we show that uniform spatial hashing and
the application of an ECS both dramatically increase simulation
performance. Our parallelised version of a plant competition model
outstrips leading serial implementations, providing an efficient tool
for virtual forestry simulation. By utilising a spatial hashmap in
tandem with an ECS, we found that simulation performance can in-
crease by a factor of 48.75 against a naive O(n2) algorithm. Paral-

lelisation can increase performance by approximately 21.98 times,
in comparison to a serial algorithm. Furthermore, the utilisation of
Unity’s data-oriented ECS, Burst compilation and job parallelisa-
tion additionally enhances simulation performance.

Additionally, we found that utilising an ECS provides most per-
formance benefits at a large-scale with a large entity count. Lever-
aging an ECS for smaller-scale simulations leads to negligible ben-
efits when contrasted to a serial implementation. This indicates that
an ECS is a valuable tool for optimising computational tasks at
scale. Our findings hope to inform the wider field of data-oriented
Entity-Component systems, and their appropriate use in optimising
large-scale simulations.

6.1. Future Work

In future work we wish to investigate other methods of optimis-
ing plant competition models. One such avenue may be through
the utilisation of GPGPU, e.g. compute shaders, to provide further
optimisation steps. We also intend to perform further rigorous anal-
ysis to investigate the role of ECS in optimisation. Examining, for
example, the optimum thread pool size in parallel job scheduling,
would provide a valuable information for games developers. An-
other interesting avenue could also consider finding an optimum
subdivision count for spatial hashing, especially with regards to
FON radius and world size. In addition, other spatial partioning
algorithms, e.g. k-d tree partioning, may be another interesting di-
rection for further research. It could be the case that k-d tree par-
titioning or a binary-space partioning algorithm may be more suit-
able for sparsely populated forestry. We are also excited to see the
application of a data-oriented ECS in future work, especially in the
optimisation of algorithms for real-time games. Another interest-
ing direction for further research may also consider the impact of
our strategy on memory performance, a task we have left for future
work. Understanding the relationship between interframe latency
and memory footprint within Unity’s data-oriented framework, for
example, could yield some interesting insights on the applicability
of Entity-Component Systems for plant competition models. We
plan to investigate the use of an ECS in further detail in future work.

Furthermore, one area left unconsidered in this paper is the
integration of our strategy with LoD groups for tree instancing,
or existing forest management SDKs such as SpeedTree’s SDK.
Building atop of this in future work would enable the seamless
integration of our approach with the frontier of real-time ren-
dering frameworks for virtual forestry. Finally, the open-source
Unity project used throughout this paper is publicly available on
GitHub, for further experimentation: https://github.com/
StaffsUniGames/pcg-forests-ecs. We would like to in-
vite contributors to help further the solution for future work.

References

[AD15] ALSWEIS M., DEUSSEN O.: Procedural techniques for sim-
ulating the growth of plant leaves and adapting venation patterns. In
Proceedings of the 21st ACM symposium on virtual reality software and
technology (2015), pp. 95–101. 2, 3, 4, 5

[AK84] AONO M., KUNII T. L.: Botanical tree image generation. IEEE
computer graphics and applications 4, 5 (1984), 10–34. 2

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://github.com/StaffsUniGames/pcg-forests-ecs
https://github.com/StaffsUniGames/pcg-forests-ecs


B. Williams, T. Oliver, D. Ward & C. Headleand / Real-time Data-Oriented Virtual Forestry Simulation for Games

[Ber21] BERCHTOLD J.: Pomegranate: Procedural 3D Tree Creation via
User-Defined L-systems. PhD thesis, California Polytechnic State Uni-
versity, 2021. 2

[BHRdA24] BADR A. S., HSIAO D. D., RUNDEL S., DE AMICIS R.:
Leveraging data-driven and procedural methods for generating high-
fidelity visualizations of real forests. Environmental Modelling & Soft-
ware 172 (2024), 105899. 3

[BLZ∗11] BAO G., LI H., ZHANG X., CHE W., JAEGER M.: Realistic
real-time rendering for large-scale forest scenes. In 2011 IEEE Interna-
tional Symposium on VR Innovation (2011), IEEE, pp. 217–223. 3

[BN12] BRUNETON E., NEYRET F.: Real-time realistic rendering and
lighting of forests. In Computer graphics forum (2012), vol. 31, Wiley
Online Library, pp. 373–382. 3

[BWB∗04] BAUER S., WYSZOMIRSKI T., BERGER U., HILDEN-
BRANDT H., GRIMM V.: Asymmetric competition as a natural out-
come of neighbour interactions among plants: results from the field-of-
neighbourhood modelling approach. Plant Ecology 170 (2004), 135–
145. 2

[CA07] COOMES D. A., ALLEN R. B.: Effects of size, competition and
altitude on tree growth. Journal of Ecology 95, 5 (2007), 1084–1097. 5

[Car19] CAREY B.: Procedural Forest Generation with L-System In-
stancing. PhD thesis, Bournemouth University, 2019. 3

[CGB∗09] COURNÈDE P.-H., GUYARD T., BAYOL B., GRIFFON S.,
DE COLIGNY F., BORIANNE P., JAEGER M., DE REFFYE P.: A forest
growth simulator based on functional-structural modelling of individual
trees. In 2009 Third International Symposium on Plant Growth Model-
ing, Simulation, Visualization and Applications (2009), IEEE, pp. 34–41.
3

[DeJ22] DEJONG T.: Simulating fruit tree growth, structure, and physi-
ology using l-systems. Crop Science 62, 6 (2022), 2091–2106. 2

[DLY∗20] DONG J., LIU J., YAO K., CHANTLER M., QI L., YU H.,
JIAN M.: Survey of procedural methods for two-dimensional texture
generation. Sensors 20, 4 (2020), 1135. 2

[DRHK∗21] DE REFFYE P., HU B., KANG M., LETORT V., JAEGER
M.: Two decades of research with the greenlab model in agronomy.
Annals of botany 127, 3 (2021), 281–295. 3

[ENMGC19] ECORMIER-NOCCA P., MEMARI P., GAIN J., CANI M.-
P.: Accurate synthesis of multi-class disk distributions. In Computer
Graphics Forum (2019), vol. 38, Wiley Online Library, pp. 157–168. 2

[FJFJ17] FAVORSKAYA M. N., JAIN L. C., FAVORSKAYA M. N., JAIN
L. C.: Software tools for terrain and forest modelling. Handbook
on Advances in Remote Sensing and Geographic Information Systems:
Paradigms and Applications in Forest Landscape Modeling (2017), 69–
109. 3

[FS18] FORD E. D., SORRENSEN K. A.: Theory and models of inter-
plant competition as a spatial process. In Individual-based models and
approaches in ecology. Chapman and Hall/CRC, 2018, pp. 363–407. 2

[FWZS11] FAN W., WANG B., ZHOU J., SUN J.: Parallel spatial hashing
for collision detection of deformable surfaces. In 2011 12th International
Conference on Computer-Aided Design and Computer Graphics (2011),
IEEE, pp. 288–295. 6

[GFK21] GARIFULLIN A., FROLOV V., KHLUPINA A.: Approximate
instancing for modeling plant ecosystems. In Proceedings of the 31st
International Conference on Computer Graphics and Vision (2021),
vol. 31, pp. 95–104. 3

[HDRZ∗03] HU B.-G., DE REFFYE P., ZHAO X., KANG M., ET AL.:
Greenlab: A new methodology towards plant functional-structural
model–structural part. In Plant growth modelling and applications
(2003), TsingHua University Press and Springer, pp. 21–35. 3

[HMVDVI13] HENDRIKX M., MEIJER S., VAN DER VELDEN J., IO-
SUP A.: Procedural content generation for games: A survey. ACM Trans-
actions on Multimedia Computing, Communications, and Applications
(TOMM) 9, 1 (2013), 1–22. 1

[KCR∗23] KUMARAN V., CARPENTER D., ROWE J., MOTT B.,
LESTER J.: End-to-end procedural level generation in educational games
with natural language instruction. In 2023 IEEE Conference on Games
(CoG) (2023), IEEE, pp. 1–8. 2

[KGM14] KENWOOD J., GAIN J., MARAIS P.: Efficient procedural gen-
eration of forests. Journal of WSCG 22 (2014). 3

[KS15] KOHEK Š., STRNAD D.: Interactive synthesis of self-organizing
tree models on the gpu. Computing 97 (2015), 145–169. 3

[KS18] KOHEK Š., STRNAD D.: Interactive large-scale procedural forest
construction and visualization based on particle flow simulation. In Com-
puter Graphics Forum (2018), vol. 37, Wiley Online Library, pp. 389–
402. 3

[LD05] LAGAE A., DUTRÉ P.: A procedural object distribution function.
ACM transactions on graphics (TOG) 24, 4 (2005), 1442–1461. 2

[LKL22] LIEB S. J., KLEE N., LAWONN K.: Clasping trees-a pipeline
for interactive procedural tree generation. In VMV (2022), pp. 49–56. 2

[LLB23] LEE J. J., LI B., BENES B.: Latent l-systems: Transformer-
based tree generator. ACM Transactions on Graphics 43, 1 (2023), 1–16.
2

[LP∗02] LANE B., PRUSINKIEWICZ P., ET AL.: Generating spatial dis-
tributions for multilevel models of plant communities. In Graphics in-
terface (2002), vol. 2002, Citeseer, pp. 69–87. 3, 5

[LWW10] LIPP M., WONKA P., WIMMER M.: Parallel generation of
multiple l-systems. Computers & Graphics 34, 5 (2010), 585–593. 3

[NFP22] NUNES R., FERREIRA J. F., PEIXOTO P.: Procedural gener-
ation of synthetic forest environments to train machine learning algo-
rithms. In ICRA 2022 Workshop in Innovation in Forestry Robotics:
Research and Industry Adoption (2022). 3

[NZ22] NEWLANDS C., ZAUNER K.-P.: Procedural generation and ren-
dering of realistic, navigable forest environments: An open-source tool.
arXiv preprint arXiv:2208.01471 (2022). 3

[PdLPH14] POZZER C. T., DE LARA PAHINS C. A., HELDAL I.: A hash
table construction algorithm for spatial hashing based on linear memory.
In Proceedings of the 11th Conference on Advances in Computer Enter-
tainment Technology (2014), pp. 1–4. 5

[PH13] PRUSINKIEWICZ P., HANAN J.: Lindenmayer systems, fractals,
and plants, vol. 79. Springer Science & Business Media, 2013. 2

[Pru86] PRUSINKIEWICZ P.: Graphical applications of l-systems. In Pro-
ceedings of graphics interface (1986), vol. 86, pp. 247–253. 2

[RB85] REEVES W. T., BLAU R.: Approximate and probabilistic al-
gorithms for shading and rendering structured particle systems. ACM
siggraph computer graphics 19, 3 (1985), 313–322. 2, 3

[spe] Speedtree documentation: Forest library. https://docs.
speedtree.com/doku.php?id=culling_population_
structure. Accessed: 2024-08-14. 3

[Ste23] STEINER M.: Sketch based L-systems for tree modeling in virtual
reality. PhD thesis, Technische Universität Wien, 2023. 2

[TTWZ20] TANVEER M. H., THOMAS A., WU X., ZHU H.: Simulate
forest trees by integrating l-system and 3d cad files. In 2020 3rd Interna-
tional Conference on Information and Computer Technologies (ICICT)
(2020), IEEE, pp. 91–95. 2

[VRP22] VENKATARAMANAN A., RICHARD A., PRADALIER C.: A
data driven approach to generate realistic 3d tree barks. Graphical Mod-
els 123 (2022), 101166. 2

[WH17] WILLIAMS B., HEADLEAND C. J.: A time-line approach for the
generation of simulated settlements. In 2017 International Conference
on Cyberworlds (CW) (2017), IEEE, pp. 134–141. 2

[WRH19] WILLIAMS B., RITSOS P. D., HEADLEAND C. J.: Evaluating
models for virtual forestry generation and tree placement in games. In
CGVC (2019), pp. 65–73. 2, 4, 5

[WRH20] WILLIAMS B., RITSOS P. D., HEADLEAND C.: Virtual
forestry generation: Evaluating models for tree placement in games.
Computers 9, 1 (2020), 20. 2

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://docs.speedtree.com/doku.php?id=culling_population_structure
https://docs.speedtree.com/doku.php?id=culling_population_structure
https://docs.speedtree.com/doku.php?id=culling_population_structure

