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Abstract

Deep learning models achieve high accuracy in the semantic segmentation of 3D point clouds; however, it is challenging to
discern which patterns a model has learned and how it derives its output from the input. Recently, the Integrated Gradients
method has been adopted to explain semantic segmentation models for 3D point clouds. This method can be used to generate
saliency maps that visualize the contribution of input points to a particular model output. However, there is a lack of
quantitative evaluation of the reliability of the generated saliency maps and the influence of the baseline selection (a central
component of Integrated Gradients) on the method’s results. In this paper, we quantitatively evaluate the reliability of saliency
maps generated by the Integrated Gradients method for a 3D point cloud semantic segmentation model through well-known
sanity checks from the image domain that we adapt to 3D point cloud segmentation. We perform these sanity checks for three
different baselines to further evaluate the stability of the generated saliency maps concerning the baseline choice. Our results
indicate that the Integrated Gradients method is sensitive to both the parameters of the model and training labels, unstable
concerning the choice of baseline, and that, although it can identify points with high contributions to the model output, it fails
to identify correctly if such contributions are positive or negative. Finally, we propose an averaging approach to aggregate
the results of points that receive multiple scores from Integrated Gradients during the segmentation process and show that it

produces saliency maps that better reflect high-contribution input points than previous approaches.

CCS Concepts

* Human-centered computing — Visualization design and evaluation methods; Geographic visualization; * Computing

methodologies — Neural networks;

1. Introduction

3D point clouds are widely used in geospatial applications, as they
can serve as point-based 3D models or base data for 3D model re-
construction. Semantic segmentation, which aims to assign an ob-
ject class label to each point, plays a fundamental role in a grow-
ing number of geospatial applications [WK19; GHD*17]. Deep
learning (DL) models achieve high accuracy in semantic segmen-
tation of 3D point clouds; however, the large number of parameters
and layers of DL models makes it challenging to discern which
patterns a model has learned and how it derives its output from
the input data. Attributing the predictions of a DL model to its
input would be beneficial to satisfy regulatory requirements, de-
bug models, or verify whether a model has learned unintended
patterns [AGM*18]. To address this issue, several methods for
generating saliency maps have been proposed for image classifi-
cation [LBB*23]. These methods aim to generate saliency maps
that visualize how different pixels of an image contribute to the
prediction score for a given class. Although some of these meth-
ods have been transferred or adapted to 3D point cloud classifica-
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tion [TSS23; ZCY*19; ZWQF20; GWY20], transferring these ap-
proaches to 3D point cloud semantic segmentation is not straight-
forward. Since semantic segmentation can be considered a point-
wise classification problem, a naive approach would be to generate
separate saliency maps for each point. However, this would result in
a high number of saliency maps, which would not be feasible for vi-
sual inspection. Therefore, approaches for aggregating the saliency
maps of individual points are required. Furthermore, DL models
for semantic segmentation of large-scale 3D point clouds usually
rely on dividing the 3D point clouds into smaller subsections and
processing them separately. This raises the additional question of
how saliency maps for individual subsections can be aggregated,
especially if the subsections overlap.

The work by SCHWEGLER, MULLER, and REITERER [SMR23]
is one of the first to explore these issues, applying the Integrated
Gradients (IG) method to explain 3D point cloud semantic seg-
mentation models. In the IG method, a range of inputs is gener-
ated by linearly interpolating along a straight-line path between a
baseline input and the original input, and the gradients of the input
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features integrated over all generated inputs are used as a measure
of saliency [STY17]. In the approach of SCHWEGLER, MULLER,
and REITERER [SMR23], aggregated saliency maps are computed
by combining the prediction scores of all points in a class and keep-
ing only the last attribution when a point is contained in multiple
subsections. However, their work only presents the results visually
and lacks a quantitative evaluation of whether the obtained results
correctly reflect the relevance of the input for the model. Further-
more, they do not evaluate how the saliency maps are influenced
by the choice of baseline, although this has been shown to have a
strong influence on the resulting saliency maps for image classifi-
cation models [HSM*22].

Therefore, our work focuses on a quantitative evaluation of 1G-
based saliency maps for the semantic segmentation of large-scale
3D point clouds, using several previously proposed metrics to
evaluate saliency maps [AGM*18; PDS18; TSS23]. Specifically,
three sanity checks are conducted on IG-based saliency maps ob-
tained from the RandLLA-Net architecture [HY X*20] trained on the
PARIS-CARLA-3D dataset [DDR*21]: (1) Using the model pa-
rameter randomization and (2) the data randomization tests pro-
posed by ADEBAYO, GILMER, MUELLY, et al. [AGM*18] it is
tested whether the saliency maps obtained from IG are sensitive
to the parameters of the model to be explained and the training
labels. (3) Using ablation tests based on the work of PETSIUK,
DAs, and SAENKO [PDS18], it is tested whether gradually remov-
ing the input points with the highest and lowest attribution scores
(i.e., saliency) decreases the average prediction probability of the
remaining points for a given class. To test whether the IG-based
saliency maps are stable with respect to the baseline choice, the san-
ity checks are conducted for three different baselines. Furthermore,
we propose to average the obtained attributions of points present
in multiple subsections of the point cloud, instead of the overwrit-
ing approach proposed by SCHWEGLER, MULLER, and REITERER
[SMR23], assessing the reliability of both approaches through the
aforementioned sanity checks across all evaluated baselines.

Our results show that the IG method for semantic segmentation
of 3D point clouds is sensitive to the model parameters and the
relationship between the observed data and the training labels. Fur-
thermore, it shows instability with respect to the studied baselines,
showing different results in the ablation tests and saliency maps for
each of them. Through the ablation tests, we find that the absolute
values of the IG output better reflect the model behavior, suggest-
ing that IG fails to correctly identify whether the contributions of
points towards the model output are positive or negative. Finally,
we find that our proposed averaging approach performs better in
the ablation tests and produces visually clearer saliency maps.

2. Related Work
2.1. Saliency Explanation Methods for 3D Point Cloud Models

The use of explainable artificial intelligence (XAI) techniques to
explain DL models for 3D point cloud analysis is a relatively
new field, with initial works exploring the use of saliency meth-
ods [GWY20; MPF*22; TSS23; ZCY*19; ZWQF20], surrogate
models [TK22], activation maximization [Tan23b], and point at-
tacks [TK23]. Our work focuses on saliency methods, i.e., methods

that aim to visualize the contribution of different input features to
a particular model output. Most existing work on saliency methods
for 3D point cloud models targets classification tasks. For example,
GUPTA, WATSON, and YIN [GWY20] transfer several gradient-
based saliency methods from the image domain to 3D point cloud
classification, namely vanilla gradients [SVZ14], Guided Back-
propagation [SDBR15], and IG [STY17]. The authors evaluate
them on two DL architectures and find that the methods studied
assign high attribution values to edges and corners, with IG cou-
pled with PoinetNet [QSMG17] producing more uniform saliency
maps. [MPF*22] implement the Grad-CAM [SCD*17] algorithm
for 3D point cloud classification models and combine it with visu-
alizations of a model’s latent features based on dimensionality re-
duction. ZIWEN, WU, QI, and FUXIN [ZWQF20] generate saliency
maps by optimizing a loss function that aims to maximize the pre-
dicted probability for a target class when the saliency map is used as
an input mask and to minimize it when the inverse saliency map is
used as an input mask. The masking procedure is implemented us-
ing a curvature-based smoothing approach. ZHENG, CHEN, YUAN,
et al. [ZCY*19] suggest constructing saliency maps for 3D point
cloud classification models by point dropping. Since point drop-
ping is a non-differentiable operator, they approximate point drop-
ping by shifting points towards the point cloud centroid and use the
gradients of the classification loss with respect to the point radius
in a spherical coordinate system as a measure of saliency. TAYYUB,
SARMAD, and SCHONBORN [TSS23] propose a saliency mapping
technique that combines gradient information with point dropping
named Accumulated Piece-Wise Explanations (APE).

To the best of our knowledge, the works by KURIYAL and
KUMAR [KK24] and SCHWEGLER, MULLER, and REITERER
[SMR23] are the only ones that study saliency methods for
3D point cloud semantic segmentation models. KURIYAL and KU-
MAR [KK?24] propose point Grad-Seg Class Activation Mapping
(pGS-CAM), a saliency method that extends GradCAM to seman-
tic segmentation by aggregating the per-point gradients via summa-
tion. The authors generate saliency maps that represent the feature
importance for the segmentation results aggregated over an entire
point cloud and over subsets of points.

SCHWEGLER, MULLER, and REITERER [SMR23] apply the
IG [STY17] approach to point cloud semantic segmentation. They
visualize the explanations generated by IG for three target classes to
evaluate the impact of coordinate and color features on the semantic
segmentation performance. They use a data processing pipeline for
large-scale 3D point clouds that divides the point clouds into multi-
ple overlapping subsets and processes each subset by a DL model.
Given this pipeline, the authors compute aggregated saliency maps
by combining the prediction scores of all points in a class, and
keeping only the last attribution of a point when it is contained
in multiple subsets. Since SCHWEGLER, MULLER, and REITERER
[SMR23] do not provide a quantitative evaluation on the reliability
of the generated saliency maps, nor their stability with respect to
the choice of baseline, our work focuses on the quantitative evalu-
ation of the IG method for point cloud semantic segmentation.

2.1.1. Integrated Gradients

IG is a saliency method that generates a set of inputs by linear inter-
polation along a straight-line path between a baseline input and the
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original input to be explained. Then, the gradients of the model out-
put with respect to its input are integrated over all generated inputs
and used as a measure of saliency. IG satisfies the properties of sen-
sitivity and implementation invariance. The sensitivity property is
satisfied if, for every input and baseline that differ in one feature but
have different predictions, the differing feature receives a non-zero
attribution. Implementation invariance signifies that if two models
are functionally equivalent, their corresponding attributions must
be identical [STY17; HSM*22].

The choice of baseline depends upon the domain and task and
has been shown to impact the obtained attributions [KHA*19]. Dif-
ferent types of baselines have been explored, especially in com-
puter vision and text analysis; some of the most common base-
line approaches include black images or zero vectors [STY17],
white images [PDS18], randomly initialized baselines, maximum-
distance to input and blurred baselines [SLL20] and, more re-
cently, baselines that maximize the entropy of the classification log-
its [Tan23a]. Although there is initial work on the use of 1G or IG-
based approaches for the explanation of 3D point cloud semantic
segmentation [SMR23] DL models, to the best of our knowledge,
the impact of the baseline selection on the obtained attributions has
only been studied for the image domain [SLL20].

2.2. Sanity Checks and Metrics for Saliency Map Evaluation

One of the main challenges of saliency methods is that, given the
lack of ground truth, it is difficult to assess the quality of the gen-
erated saliency maps [AGM*18]. While some authors evaluate the
usefulness of saliency maps through user studies [HHH22], several
sanity checks and metrics have been proposed for quantitative eval-
uation: ADEBAYO, GILMER, MUELLY, et al. [AGM*18] propose
two sanity checks for saliency maps: a model parameter random-
ization test and a data randomization test. The model parameter
randomization test compares saliency maps from a trained and a
randomly initialized model. The data randomization test compares
saliency maps from a model trained with correctly labeled data and
a model trained with randomly permutated labels. Since saliency
methods should depend on the learned parameters of a model and
the labels of the training instances, the saliency maps should be
substantially different in both cases.

HEDSTROM, WEBER, LAPUSCHKIN, and HOHNE [HWLH24]
re-examine the model parameter randomization test and propose
two variations of it: Smooth Model Parameter Randomisation
Test (SMPRT) and Efficient Model Parameter Randomisation Test
(eMPRT). sMPRT aims to mitigate the impact of noise through
a de-noising step. eMPRT replaces pairwise similarity measures
(Structural Similarity Index Measure (SSIM) and Histogram Of
Oriented Gradients (HOG)) with an entropy-based complexity met-
ric to better evaluate the similarity between the test results and the
evaluated saliency maps. KINDERMANS, HOOKER, ADEBAYO, et
al. [KHA*19] suggest testing whether adding a constant shift to
the input data, which is then reversed within the model, changes
the results of a saliency method. They show that saliency methods
for image classification can produce misleading attributions since
they are sensitive to transformations that do not affect the model
performance.

In another line of work, sanity checks have been proposed that
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remove or modify the input features with the highest or lowest at-
tribution values and measure how this affects the probability pre-
dicted for a target class. For example, STURMFELS, LUNDBERG,
and LEE [SLL20] employ a top-K ablation test and a mass cen-
ter ablation test. The top-K ablation test evaluates whether remov-
ing the top K features with the highest attribution values reduces
the predicted output logits for the target class [SLL20]. The mass
center ablation test [GAZ19] calculates the center of mass of the
saliency map and removes a region around this center to determine
whether the saliency map highlights an important region in the
image [SLL20]. Similarly, PETSIUK, DAS, and SAENKO [PDS18]
propose a removal metric that measures the decrease in the prob-
ability predicted for the target class while gradually deleting or
masking the pixels with the highest attribution. Additionally, they
propose an insertion metric that measures the increase in the prob-
ability predicted for the target class as the pixels with the highest
attribution are gradually added to a baseline image. In the context
of 3D point cloud classification, TAYYUB, SARMAD, and SCHON-
BORN [TSS23] use a point-dropping approach to progressively re-
move points from the 3D point clouds based on their attribution
values, measuring the decrease in classification accuracy during
the process. The authors use two variations: high-drop, i.e., remov-
ing high-relevance points first, and low-drop, i.e., discarding low-
relevance points first. KURIYAL and KUMAR [KK24] as well as
ZHENG, CHEN, YUAN, et al. [ZCY*19] also use point-dropping
approaches to evaluate the quality of saliency maps for different
point cloud classification architectures.

3. Data and Methods

We conduct our experiments using the RandLA-Net architec-
ture [HY X*20], a multi-layer perceptron (MLP)-based architecture
specifically designed to segment large-scale 3D point clouds. Due
to its fast inference times, it allows for the incorporation of XAI
techniques while keeping the total execution times within feasible
boundaries. For the IG implementation, we use PyTorch’s autograd
engine; it computes the vector-Jacobian product to obtain the gra-
dients of the predicted class probability with respect to the model
input averaged over all points of the model input. Based on the
findings of SCHWEGLER, MULLER, and REITERER [SMR23], we
use seven interpolation steps for the IG computation. Appendix A
details the hardware and software used for all experiments.

3.1. Paris-CARLA-3D Dataset

The PARIS-CARLA-3D dataset [DDR*21] consists of two subsets
of 3D point clouds of outdoor environments. One of the subsets
was synthetically generated and contains 700 million points. The
second subset contains 3D point clouds acquired in Paris, France,
and consists of 60 million points. We only use the subset acquired
in the city of Paris, as it provides real-world data while allowing for
feasible experiment run times. We refer to this subset of the PARIS-
CARLA-3D dataset as the PARIS dataset in subsequent sections of
this paper. For training, validation, and testing, we follow the parti-
tions proposed in the original paper [DDR*21], using the Soufflot0
partition for the evaluation of the generated saliency maps. We per-
form all experiments with both the signed attribution scores and
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their corresponding absolute values for three target classes: Build-
ing, Vegetation, and Roadline (i.e., road markings), as they repre-
sent objects with very different geometries, colors, and sizes.

3.2. Data Preprocessing

Following a similar approach as THOMAS, QI, DESCHAUD, et
al. [TQD*19], we initially reduce the point density of the PARIS
dataset through grid sampling. We set the grid size to 6 cm and
use point coordinates and RGB values as model input. In line
with the work of KUMAR, ANDERS, WINIWARTER, and HOFLE
[KAWH19], we calculate normal vectors and curvature values for
each point and add them to the input features. The normal vec-
tor of a point is estimated by calculating the eigenvectors of the
3D covariance matrix of a point’s k;, nearest neighbors. The eigen-
vector with the smallest eigenvalue is taken as the normal vec-
tor [HDD*92]. To calculate the curvature value of a point, a tangent
plane is spanned by the point and its normal vector. The curvature
value is defined as the average distance of the point’s k. nearest
neighbors to this tangent plane [PGKO02]. In this work, we use em-
pirically selected values of k;, = 78 and k. = 16. We manually re-
move high-curvature outliers using the CloudCompare software.

Due to memory constraints, we use a data processing pipeline in
which spherical neighborhoods of fixed spatial extent (6 m radius)
are randomly sampled from the large-scale 3D point clouds and
processed separately by the DL models. Furthermore, each neigh-
borhood is thinned to a fixed number of points (4096) through ran-
dom sampling, as this simplifies the batch processing of the data
and ensures that the DL model can process a batch of samples with
a given GPU memory budget. During inference, we sample model
inputs from a large-scale 3D point cloud until every point has re-
ceived at least one prediction. If points are contained in multiple
neighborhoods, the predictions are averaged.

3.3. Handling of Points with Multiple Attributions

Our data preprocessing pipeline described in Section 3.2 can re-
sult in points receiving more than one prediction and attribution
score. To construct the final saliency map of the whole 3D point
cloud, SCHWEGLER, MULLER, and REITERER [SMR23] address
this problem by overwriting the point-wise attribution scores with
the most recent ones on each iteration. Given that the final predic-
tion score for a given point is computed by averaging all the pre-
diction scores it received throughout the process, for consistency,
we propose to average the obtained attributions as well. Intuitively,
points that obtain high attribution values consistently over multiple
neighborhoods should contribute more to the prediction score for a
given class. We visualize the saliency maps obtained through our
approach and the one by SCHWEGLER, MULLER, and REITERER
[SMR23] and evaluate their reliability through the sanity checks
and baseline tests described in Section 3.5 to Section 3.7.

3.4. Saliency Map Visualization

To visualize all obtained saliency maps, congruent with existing
work [STY17; SMR23], we first obtain a single attribution score
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Figure 1: Sample of the colormaps used, illustrating their variation
Sfor values in the [0,1] range.

for each point by aggregating the attributions of all per-point fea-
tures. We use two variations of this aggregation: keeping the origi-
nal attribution signs and using their corresponding absolute values.

We use a perceptually uniform sequential color map for the ab-
solute value attributions, i.e., one in which the lightness value in-
creases monotonically through the color map - appropriate for rep-
resenting ordered data. To visualize the signed attribution values,
we use a divergent color map (appropriate for representing data that
deviates around 0), i.e., one in which the lightness value increases
monotonically up to a maximum, followed by monotonically de-
creasing values. We use Matplotlib’s inferno sequential and RdBu
divergent color maps [mat24], which are shown in Fig. 1.

As SMILKOV, THORAT, KiM, et al. [STK*17] mention, visu-
alizing gradient-based saliency maps is surprisingly nuanced - the
presence of outliers with much higher attribution values than the
majority of the points (in our case, due to exploding gradients dur-
ing the IG computation) can strongly affect the color mapping and
have a large impact on the resulting visualization. To address this
issue, we clip the attribution values using minimum and maximum
thresholds. To identify appropriate clipping thresholds, we plot the
distribution of the absolute value attributions (see Appendix B for
further details). After clipping, we normalize all attribution values
to the [0, 1] range for their mapping to the corresponding color
map. For the saliency maps obtained in the randomization tests,
we use the same clipping thresholds as their corresponding orig-
inal saliency maps and use them for the normalization and color
mapping to allow for an adequate visual comparison.

3.5. Randomization Tests

To evaluate the sensitivity of the IG method to the model param-
eters and the training data, we conduct the model parameter and
the data randomization tests proposed by ADEBAYO, GILMER,
MUELLY, et al. [AGM*18] on the saliency maps obtained by both
our attribution-averaging approach and the overwriting approach
by SCHWEGLER, MULLER, and REITERER [SMR23]. ADEBAYO,
GILMER, MUELLY, et al. [AGM*18] use the SSIM and HOG im-
age similarity metrics together with the Spearman rank correlation
score to assess the similarity of the saliency maps obtained from
the randomization tests and the original model. Given that it is not
straightforward to transfer image comparison methods, we rely on
the Spearman rank correlation metric to assess the test results. To
avoid introducing distortion in the test results due to the conver-
sion to an RGB saliency map (see Section 4.3), we compute the
Spearman rank correlation score directly on the attribution values.

As a point of comparison for the obtained results and in line
with [AGM*18], we compute the Spearman rank correlation score
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between (1) the original saliency maps and randomly generated
ones, and (2) between pairs of randomly generated saliency maps,
in both cases using a random uniform distribution.

3.6. Ablation Tests

Similar to [PDS18] and [TSS23], we perform ablation tests to eval-
vate how the removal of high- and low-attribution points impacts
the average prediction probability for three target classes. We per-
form the ablation tests by progressively removing up to 80% (with a
step size of 10%) of high- and low-attribution points at two levels of
granularity: per neighborhood and on the final saliency maps for the
entire 3D point cloud. For the per-neighborhood evaluation, we ran-
domly sample 500 neighborhoods from the original 3D point cloud,
compute the attribution scores, and remove the selected percent-
age of points from the neighborhood. Since our pipeline requires a
fixed input size of 4096 points, we randomly duplicate the remain-
ing points until the required input size is reached. We then compute
the average prediction scores for the target class across all points
in the neighborhood and average them across all sampled neigh-
borhoods, excluding the duplicated points. To evaluate the saliency
maps for the entire 3D point cloud, we directly remove the high and
low attribution points from the SoufflotO partition, using the ablated
dataset as input. We then present the average predicted probability
values for each class over the entire 3D point cloud.

3.7. Comparison of Baseline Inputs

‘We compare the random and zero-vector baselines, which are com-
monly used for IG [SLL20; STY17], and the max-entropy base-
line, which was recently proposed by TAN [Tan23a]. For the case
of 3D point clouds, we define the random baseline as a random
uniform distribution of points in a volume with the same shape and
spatial extent as the original model inputs (see Section 3.2). We
produce a random distribution of points over a spherical geometry
with a 6 m radius for the x, y, and z coordinates while generating
random values for all additional per-point features within their min-
imum and maximum possible values. The max-entropy baseline is
defined as follows [Tan23a]:

By entr = argmax H (Softmax(f;(x))), (1)

where f; are the logits of the model and H (x) is the Shannon en-
tropy function [Tan23a]. We start with a random baseline and op-
timize it following Eq. (1) via gradient ascent over 100 epochs,
keeping the baseline with the highest entropy. Finally, for the zero-
vector baseline, we initialize all per-point features to zero.

4. Results
4.1. Randomization Tests

Concerning the reference values for the randomization tests (see
Section 3.5), for the first case (output saliency map compared
to a randomly generated one), we obtain an average Spearman
rank correlation score of —1.281 x 107> with a standard devia-
tion 6 = 0.00039, with its corresponding p-values showing an av-
erage of 0.5481, with ¢ = 0.2851. For the second one (comparing
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Signed attribution Abs. attribution

Class Baseline Score p-val. Score p-val.
Random 0.013 0.0 —0.019 0.0
Building Max-entropy 0.128 0.0 —0.011 0.0
Zero-vector 0.113 0.0 0.189 0.0
Random 0.033 0.0 0.130 0.0
Roadline =~ Max-entropy 0.021 0.0 0.1 0.0
Zero-vector 0.037 0.0 —0.238 0.0
Random 0.089 0.0 0.041 0.0
Vegetation Max-entropy 0.078 0.0 —0.002 0.0
Zero-vector  —0.037 0.0 0.042 0.0

Table 1: Spearman rank correlation scores between the original at-
tributions and those from the model parameter randomization test.

Signed attribution Abs. attribution

Class Baseline Score p-val. Score p-val.
Random —0.009 0.0 —0.097 0.0
Building Max-entropy 0.01 0.0 —0.044 0.0
Zero-vector 0.02 0.0 —0.049 0.0
Random 0.002 0.0 0.1 0.0
Roadline ~ Max-entropy 0.001 0.0 0.059 0.0
Zero-vector 0.022 0.0 0.106 0.0
Random 0.002 0.0 0.009 0.0
Vegetation Max-entropy 0.001 0.0003  0.002 0.0
Zero-vector 0.004 0.0 0.038 0.0

Table 2: Spearman rank correlation scores between the original
attributions and those from the data randomization test.

randomly generated saliency maps), we get a Spearman rank cor-
relation score of 1.7948 x 107> with 6 = 0.0003 and p-values of
0.4796 with 6 = 0.2543. These correlation scores indicate that the
saliency maps are non-significantly correlated, while the higher p-
values indicate that the null hypothesis (i.e., that the correlation is
due to chance) cannot be rejected - which is because we are com-
paring with randomly generated data. In contrast, successful ran-
domization test results would have a low Spearman rank correla-
tion score and a low p-value, indicating that the saliency maps are
weakly correlated (i.e., significantly different) and that this is un-
likely to be due to chance. Table 1 and Table 2 show low correlation
scores between the original saliency maps and the ones resulting
from model and data randomization, indicating no evidence that IG
is insensible to model parameters and training data. Figs. 12 to 14
(in Appendix C) show examples of saliency maps obtained in the
randomization tests for all classes.

4.2. Ablation Tests

Fig. 2 and Fig. 15 (in Appendix C) show the results of the ablation
tests (high-drop and low-drop, respectively, for 500 randomly sam-
pled individual neighborhoods across all baselines with and without
absolute-value conversion). Overall, we observe a more expected
behavior when using the absolute values of the obtained attribu-
tions, as in these cases the average class probability goes down
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when ablating high-relevance points, with the average class proba-
bility staying stable or even increasing when ablating low-relevance
points. We observe different results across the evaluated baselines,
with the zero-vector baseline showing a stronger effect.

Fig. 3 and Fig. 16 (in Appendix C) show the results of the high-
drop and low-drop ablation tests for the full 3D point cloud, us-
ing SCHWEGLER, MULLER, and REITERER [SMR23] overwriting
method and our averaging method to compute the final attribution
scores used for ablation and saliency map generation. We observe
a similar pattern as with individual neighborhoods (Figs. 2 and 15),
with the absolute values of the attributions displaying the expected
behavior (i.e., the average class probability being reduced when
ablating high-attribution points, and vice versa). Consistent with
the individual neighborhood ablation tests, we observe a different
behavior across the evaluated baselines; the zero-vector baseline
combined with our averaging method shows the best overall re-
sults. Surprisingly, when preserving the signs of the attribution val-
ues, the average class probability increases as larger percentages
of high-attribution points are removed for the individual neighbor-
hoods and the aggregated results. Furthermore, when ablating low-
attribution points, we see a stronger tendency for the average class
probability to stay stable or increase when using absolute values.
This indicates that high-attribution points might be incorrectly as-
signed negative signs during the IG computation.

4.3. Saliency Map Visualization

Since the zero-vector baseline shows the best overall results in
the ablation tests, in most cases showing a larger decrease in the
average class probability when removing high-attribution points
(Figs. 2 and 3) and vice versa (Figs. 15 and 16), we choose it to
generate the final saliency maps. Figs. 4 and 5 and Figs. 8 to 11
in the appendix show a comparison between the outputs from our
proposed averaging approach and the overwriting approach from
[SMR23]. Our method produces saliency maps highlighting more
clearly the points belonging to the Roadline class, and points close
to them. For the Building class, both approaches show similar re-
sults, with the divergent color map showing a higher number of
positively attributed points within the building structure. Our ap-
proach highlights a large number of points for the Vegetation class,
with many belonging to surrounding structures. However, this re-
sult is likely due to the attribution capping threshold used (see Ap-
pendix B). Finally, Fig. 6 shows saliency maps for all classes and a
zero-vector baseline using our averaging approach.

5. Discussion and Conclusions

The model parameter and data randomization tests show consistent
results across all baselines and evaluated classes with low Spear-
man correlation scores, indicating no evidence that IG is insensi-
tive to the model training and data labeling process, pointing to-
wards the usefulness of IG as a tool for debugging DL models for
3D point cloud semantic segmentation.

However, the IG method shows instability with respect to the
choice of baseline, as the results change between baselines for the
evaluated classes, both in terms of the saliency maps themselves

and the ablation test results. Overall, the zero-vector baseline pro-
duces clearer saliency maps and performs better in the ablation
studies compared to the random and max-entropy baselines for the
evaluated DL model and semantic segmentation task.

The ablation test results are better when using the absolute val-
ues of the attributions instead of the signed values. This result sug-
gests that the IG method with the zero-vector baseline can correctly
identify points that have a high overall influence on the prediction
probability. Nevertheless, when ablating high-contribution points
using the original signs of the obtained attributions, we see an un-
expected increase in the average class probabilities for the individ-
ual neighborhoods and the aggregated saliency maps. This behavior
indicates that IG fails to properly distinguish between points with
positive and negative contributions to the prediction probability. A
limitation of the ablation test results is that the observed changes
might be because the ablated model inputs no longer fit into the
distribution of training data learned by the model, rather than to the
effect of removing high- or low-attribution points [HEKK19]. In
our study, this is mitigated in the case of the aggregated saliency
maps, since we directly remove points from the 3D point cloud,
reducing the need for the model to extrapolate on the modified in-
puts [HMZ21]. Furthermore, we observe a consistent behavior in
both the per-neighborhood and aggregated ablation studies. Never-
theless, it is necessary to evaluate the IG across a wider variety of
DL architectures and object classes in future works, as it is possible
that these results would differ in such cases.

Regarding the aggregation of the attributions output by the IG
method, we find that averaging them for points that received mul-
tiple prediction scores and attribution values produces sharper
saliency maps and yields better results in the ablation tests. In-
tuitively, points that consistently receive high attribution scores
across multiple overlapping neighborhoods should contribute to a
higher degree to the model output. Nevertheless, exploring differ-
ent aggregation approaches that address the inherent loss of detail
stemming from the aggregation process stands as a promising av-
enue for further research.

Furthermore, we observe a change in the distribution of the
attribution values obtained by our averaging approach (see Ap-
pendix B), which in turn influences decisions related to the visu-
alization of the saliency maps (e.g., different capping thresholds
for the Vegetation class, affecting its corresponding saliency map).
However, given that we see high-attribution points for this class
in objects unrelated to the class in question (e.g., a large number
of high-attribution points in the road surface), these results may
reflect that the model has learned an unintended task (i.e., a task
different from vegetation segmentation) by modeling the loss func-
tion or data in a way that allows for an unintended abstraction -
which could also explain the inconsistent behavior observed in the
ablation test results for this class.

Our data processing pipeline is constrained to generate inputs
of fixed size for the DL models. This constraint allows us to effi-
ciently implement the IG method because only one baseline needs
to be generated for the whole process. However, when using data
processing pipelines and DL architectures that work with variable
input sizes, scalability issues could arise for IG since this would
require the generation of different baselines for each input size.

© 2024 The Authors.
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Figure 2: Predicted probability scores after removing high-attribution points (lower is better) for different classes and baselines, when
using signed attribution values (first row) or absolute attribution values (second row), averaged over 500 randomly sampled subsections
(neighborhoods).
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Figure 3: Predicted probability scores after removing high-attribution points (lower is better) for different classes and all baselines, when
using signed attribution values (first row) or absolute attribution values (second row) for the final saliency maps using our averaging
approach and the overwriting approach from [SMR23].
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Figure 4: Saliency maps for the Roadline class with a zero-
vector baseline. Absolute-value visualization with our averaging
approach (top) and the overwriting approach from [SMR23] (bot-
tom).

Figure 5: Saliency maps for the Roadline class with a zero-vector
baseline. Diverging visualization with our averaging approach
(top) and the overwriting approach from [SMR23] (bottom).

Figure 6: Saliency maps for all evaluated classes using a zero-
vector baseline, with absolute-value (top) and diverging (bottom)
visualizations.

Generating multiple baselines would add a significant amount of
computational load, especially when using approaches such as the
max-entropy baseline, which requires a gradient ascent process for
each sample to be explained.

Although through visual inspection, the absolute-value saliency
maps highlight areas that are intuitive from a human perspective
(e.g., high attribution scores on building structures and road marks),
the divergent saliency maps show a mix of highly positive and
highly negative attributions in such regions, following no obvious
pattern. This behavior could be due to the model itself learning un-
intended patterns; however, it could also be due to visualization ar-
tifacts stemming from decisions taken for the saliency map visual-
ization (e.g., defining capping thresholds in too low or too high val-
ues). XAl visualization techniques better suited to produce human-
understandable explanations stands as a promising avenue for fu-
ture work. However, such approaches should take care to accurately
reflect the models’ behavior, avoiding confirmation biases and re-
ducing overreliance and false expectations on the performance of
the models [VIG*23].

Our results suggest that the IG method can identify points with
a high contribution towards a model output for 3D point cloud se-
mantic segmentation, and it is sensitive to model parameters and
training data, showing its potential as a tool for use cases such
as model debugging. Nevertheless, care should be taken to select
an appropriate baseline, as this can significantly impact the results.
Furthermore, our experiments indicate that IG struggles to correctly
distinguish between positive and negative impact of points towards
a model output, which should be taken into consideration when in-
terpreting the generated explanations.
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