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Figure 1: Overview of the synthetic data rendering pipeline, together with the three types of augmentation

Abstract
Automatic anomaly detection for surveillance purposes has become an integral part of accident prevention and early warning
systems. The lack of sufficient real datasets for training and testing such detectors has pushed a lot of research into synthetic data
generation. A hybrid approach by combining real images with synthetic elements has been proven to produce the best training
results. We aim to extend this hybrid approach by combining the backgrounds and real people captured in datasets with synthetic
elements which dynamically react to real pedestrians and create more coherent video sequences. Our pipeline is the first to
directly augment synthetic objects like handbags and suitcases to real pedestrians and provides dynamic occlusion between real
and synthetic elements in the images. The pipeline can be easily used to produce a continuous stream of randomized augmented
normal and abnormal data for training and testing. As a basis for our augmented images, we use one of the most widely used
classical datasets for anomaly detection - the UCSD dataset. We show that the synthetic data produced by our proposed pipeline
can be used to make the dataset harder for state-of-the-art models, by introducing more varied and challenging anomalies. We
also demonstrate that the additional synthetic normal data can boost the performance of some models. Our solution can be
easily extended with additional 3D models, animations, and anomaly scenarios.

CCS Concepts
• Computing methodologies → Image processing; Neural networks; Anomaly detection;

1. Instructions

The research field of automatic anomaly detection in outdoor
pedestrian videos has seen significant growth, focusing on improv-
ing accuracy and robustness, and expanding the range of detectable
anomalous events. However, despite the extensive efforts, reliable
solutions remain elusive. The primary challenge stems from the
scarcity of consistent abnormal data, as it is rarely captured inde-

pendently. Additionally, the context, camera positions, time of day,
and other factors greatly influence anomaly detection, further com-
plicating the task. Consequently, existing algorithms often address
only a limited subset of anomalies, hindering the generality and
reproducibility of the proposed methods.

Anomaly detection models mostly employ the idea of treating
anomalies as an outlier detection task, where parts of the footage
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that deviate from the learned normality are flagged as anomalous
[ZLK∗19, TPC∗21]. As shown by Acsintoae et al. [AFG∗22] there
is also a second class of anomaly detectors that function as action-
recognition models, which are weakly supervised on both normal
and abnormal data [LCC∗21,PNH20,ZLL∗22,PNH20,RJ20]. The
common factor between the two types of anomaly detectors is that
they require a large number of normal and abnormal images for
training and testing. Another commonality is that all these meth-
ods require annotated data, either coarsely annotated on frame level
or more fine-grained annotations of the anomalies themselves ei-
ther through bounding boxes or per-pixel masks [LSJ13, RJ20].
Several open-source outdoor datasets exist that are widely used
and focus on specific anomalies - connected to either pedestrian
behavior, movement of vehicles, or interactions between the two
[MLBV10,COCH21,LLLG18]. Another such dataset that is the fo-
cus of this paper is the widely used UCSD [MLBV10]. The dataset
provides many challenges for anomaly detection like grayscale im-
ages, limited resolution, and crowded scenes. On the other hand, the
dataset has been considered "solved" in recent years, because of its
limited types of anomalies - bicycles, cars, and skateboards on a
pedestrian street have made it easy for modern anomaly detectors
to achieve accuracy above 90% both per frame and per anomaly
detected [AFG∗22, AZLL21, LCC∗21, ZLL∗22, PNH20].

Synthetic augmentation is used to try to combat the lack of
quantity and diversity of data. Such datasets exist for scene pars-
ing [WU18,RHK17], pedestrian tracking [FBM∗21], and semantic
segmentation [XWY∗19] among others. These datasets can be sep-
arated roughly into ones that have fully generated backgrounds and
foregrounds using programs like Blender, Cinema4D, Autodesk
Maya, etc., and ones that combine backgrounds from real images
with synthetic objects in the foreground. For anomaly detection of
pedestrians most synthetic data is done by combining real images
with synthetic augmentations [AFG∗22, MSG∗23, GBŠ21]. This
is seen as better for training purposes, as real-world backgrounds
shorten the distribution gap between synthetic and real images. But
even they need to take additional steps to ensure that models trained
on them can be successfully used on real data, like employing Gen-
erative Adversarial Networks (GANs) to translate the synthetic ob-
jects to a more realistic look.

With this paper, we would like to propose a novel rendering
pipeline for combining the UCSD dataset with synthetic data which
can dynamically react to the real parts of the dataset. we would like
to bring new life to this dataset and make it even more useful for
researchers. To combine real pedestrians with synthetic ones, we
propose a pre-processing step using the YoloV5 model to detect
the bounding boxes of people in the dataset. These bounding boxes
serve as obstacles for synthetic objects, which interact with them
while navigating the generated scene. To enhance the integration of
3D models with the low-resolution real parts of the scene, we em-
ploy various post-processing shaders. Moreover, we dynamically
generate occlusions for foreground pedestrians, ensuring realistic
occlusion of synthetic objects by real people. Additionally, we pro-
vide a manual background occlusion tool, enabling users to spec-
ify which portions of the real background should occlude synthetic
objects. We use three types of synthetic objects - humans, animals,
and carry-on objects like purses and backpacks, with a number of
anomalies connected with each. The proposed rendering pipeline

is built through Unity and is easily extendable through the addition
of more models, animations, and behaviors. The pipeline can be
expanded to other datasets as well.

For testing, we select five state-of-the-art anomaly detectors that
achieve above 90% accuracy on the real anomalies on the UCSD
datasets. We test them on anomalies created through the proposed
rendering pipeline. All five models experience significantly lower
performance and struggle to detect all synthetic anomalous frames,
showing that anomalies created through the pipeline can make the
UCSD dataset more challenging and thus more useful for devel-
oping such algorithms. In addition, we generate synthetic normal
pedestrian data and use it together with the real training images
to see if it can boost the performance of the anomaly detectors on
the real anomalies. We achieve mixed results with some detectors
getting better results, while others getting worse accuracy.

In summary, the paper’s main contributions are:

1. An extendable synthetic data rendering pipeline that combines
real dataset foregrounds and backgrounds with synthetic objects
that dynamically react to the real ones for generating random-
ized training and testing data for anomaly detection;

2. To our knowledge the first solution that can add synthetic items
like handbags and briefcases to real pedestrians and creating a
new type of anomaly scenario by dropping them;

3. Method for occlusion of synthetic objects by dynamic real fore-
ground pedestrians;

4. Demonstrating that the synthetic anomalies can make an old
dataset more challenging and the synthetic normal data can
boost model accuracy.

2. Related Work

2.1. Anomaly Detection Datasets

Anomaly detection datasets can be separated into single-scene
and multiple-scene. Widely used single-scene datasets like UCSD
[MLBV10], Avenue [LSJ13], StreetScene [RJ20], and ADOC
[PZ∗20] train and test models that rely on temporal and move-
ment information and capture a normality model specific to a cer-
tain dataset. On the other hand, multiple-scene models like UMN
[MOS09] and ShanghaiTech [LLLG18] are used to train more
generic models that learn a normality model that can be used be-
tween datasets but are more constrained to representations that do
not follow specific temporal changes from pedestrians, vehicles,
etc. Anomalies, by their very nature, are scene-specific and chal-
lenging to capture and reproduce in a natural and unstaged man-
ner. Consequently, anomaly detection datasets predominantly con-
sist of normal data, far outnumbering abnormal instances. This
leads to the prevalence of open-set benchmarks in these datasets,
where training subsets only contain normal data or, if anomalies
are present, they differ from those in the testing subsets. As a re-
sult, most datasets offer a limited number of anomalies primar-
ily related to pedestrian activities or vehicles. Unfortunately, this
lack of anomaly variety makes the datasets appear staged and arti-
ficial, deviating from the complete representation of reality. Conse-
quently, they fail to provide the necessary challenges to accurately
evaluate the performance of anomaly detection models. Addition-
ally, not all datasets provide pixel-level annotations for anomalies,
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instead offering only frame-level annotations. This limitation re-
duces their usefulness in scenarios where precise identification of
anomaly type and location is crucial.

2.2. Synthetic Datasets

The reliance on deep learning models on large quantities of data
has pushed the development of more and more synthetic datasets
for different use cases. Self-driving cars [WU18] have greatly ben-
efited from synthetic datasets, together with indoor [CWB∗20]
and outdoor [EDV∗22] scene understanding and semantic seg-
mentation. Synthetic datasets can be roughly divided into two
main groups - fully synthetic and combined real and synthetic.
Fully synthetic datasets rely on data gathered either through games
[LYA∗22], game engines [Uni17], rendering engines like Blender
or Maya [WMH18], or through deep diffusion models and GANs
[HSY∗22]. This way of generating synthetic data has the benefit
of a potentially unlimited number of unique scenarios and visu-
als. It also has the significant drawback of a large distribution gap
between the fully synthetic data and the real-life data, which can
hurt the accuracy and robustness of models using it for training and
testing. A lot of times to limit the distribution gap, additional post-
processing of the synthetic data is required using GANs, which lim-
its the ease of use and versatility of such datasets.

On the other hand, datasets created by combining real-world data
with synthetic objects aim to naturally shorten the distribution gap
between the dataset and real data. These datasets can be addition-
ally subdivided into two types - ones that the synthetic parts are im-
ages composited onto other images [CLU∗21, TCA∗19], and ones
that use 3D models and game or rendering engines to augment real
images with synthetic parts [EJZ∗21].

Two of the state-of-the-art datasets for anomaly detection, uti-
lizing this method of augmenting real image backgrounds with 3D
models are the works by Madan et al. [MSG∗23] and Acsintoae et
al. [AFG∗22]. The work by Madan et al. focuses on thermal imag-
ing data and only synthesizes falling human anomalies, making it
more limited. The work by Acsintoae et al. focuses on creating a
large variety of anomalies and normal scenarios but only uses static
backgrounds and does not give an easy way to generate more data
as the authors estimate it took them 41.1 days to render the dataset
of 236,902 images.

To the best of our knowledge, we present the first rendering
pipeline for augmenting an existing widely known dataset for urban
anomaly detection. We aim to make the pipeline flexible enough
that additional synthetic augmentations can be added easily like
more models, animations, scenarios, and even different types of
anomalies. Our solution is also the first one to contain moving syn-
thetic objects and real pedestrians in the same video sequences,
with the synthetic objects reacting to the real ones both movement-
wise and visually. Our rendering pipeline can generate training, val-
idation, and testing data, as well as frame-level and pixel-level an-
notations.

3. Proposed Rendering Pipeline

In this paper, we created a rendering pipeline that can be used to
generate synthetic training and testing data to augment a widely

used, but ultimately "solved" dataset - the UCSD [MLBV10]. This
pipeline can then be used together with the dataset to generate new
training and testing data, based on a user’s requirements. We will
give a step-by-step overview of the different parts of the pipeline
in this section. An overview of the whole process can be seen in
Figure 1.

3.1. Dataset Pre-processing

The UCSD dataset needs to be pre-processed before it can be used
as part of the dataset rendering pipeline in Unity. To correctly po-
sition the Unity cameras corresponding roughly to the one used
to capture the dataset, the extrinsic and intrinsic parameters of the
camera need to be found. As these are not known, we have chosen
to approximate them using fSpy [Gan18]. This is done by manu-
ally selecting two sets of perpendicular vanishing points on an in-
put image, from which the software approximates the focal length,
orientation, and position of the camera that captured these im-
ages. Because the UCSD dataset is comprised of two subsets each
with a static camera, we need to do this two times. The PEDS1,
with a camera oriented towards the movement of pedestrians, and
the PEDS2, with a camera oriented perpendicular to the move-
ment. Once these parameters are calculated they can be exported
to Blender where a 3D camera, a plane representing the ground
seen in the images, and a projection plane on which the images are
shown are created and later exported to Unity.

We also need to know the positions of the real pedestrians in
each image and their relative sizes, we run the subsets through the
YoloV5 [JSB∗20] object detector. For each image, the bounding
boxes of the detected pedestrians are extracted for use in Unity
(Figure 2a). We have chosen the YoloV5 algorithm as it provides
very good detection performance on images with limited resolution
and color information, which the grayscale 360x240 and 238x158
UCSD images are. YoloV5 provides feature interchangability be-
tween the semantic and context layers, giving it higher robust-
ness to different camera angles, orientations, and scales. Using this
model makes it easier to extend our solution to other datasets later
on.

The bottom part of the calculated bounding box for each detected
pedestrian is used to shoot a ray toward the camera’s 3D position
(Figure 2b). Where these rays hit the designated ground plane a 3D
capsule volume is created. This volume is scaled based on the dis-
tance from the bounding box to the 3D camera (Figure 2c). These
capsule volumes will be later used for both dynamic occlusion
of the synthetic objects, as well as obstacles for their pathfinding
movement.

3.2. Synthetic Object Visualization and Blending

Cameras used for surveillance are quite often lower-resolution and
susceptible to environmental noise degradation and compression
artifacts [TNR∗12]. We introduce a number of post-processing
shaders that try to mimic this behavior for the added 3D models, to-
gether with transforming them from RGB to grayscale to blend bet-
ter with the real backgrounds. In addition, we also introduce a trans-
parent shadow catcher shader used on the ground surface plane, so
the 3D models can have correct shadowing. Finally, as we want to
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(a) YoloV5 with bounding boxes (b) Raycasts from each pedestrian (c) 3D positions on the walking plane

Figure 2: Pre-processing steps for extracting the real pedestrians from the dataset and finding their 3D positions. The YoloV5 model is used
to detect the pedestrians in each frame (Figure 2a). A ray is shot from each bounding box on the projection plane towards the 3D camera
found using fSpy (Figure 2b). Where these rays intersect the walking plane a capsule volume is created representing the real pedestrian’s 3D
position (Figure 2c).

Figure 3: Shader processing of the 3D objects. The original image of the 3D model is first pixelized, then blurred in the horizontal and vertical
direction using a Gaussian filter. The resultant image is then transformed to grayscale and finally, the shadow of the model is visualized on
the transparent walking surface

capture ground truth data for the synthetic anomalies we also use
the Unity ML-ImageSynthesis package [Uni17] for extracting in-
stance and semantic segmentation. Below we explain each of the
post-processing steps shown in Figure 3.

1. Pixelize: To achieve the image degradation that happens from
jpeg and low bitrate compression in CCTV cameras, like the
one used for the UCSD dataset, we use a pixelize shader to ap-
proximate the block artifacts in the real moving pedestrians. For
each synthetic model, a bounding cube is created capturing the
whole object, and the pixelize shader is applied to this cube. We
capture the contents of the framebuffer into a texture and pix-
elize it using Equation 1, where T is the texture coordinates, R
is the camera target resolution, and Sp is the pixelization size.

Tpixelate = round
(

T ÷ Sp

R

)
· Sp

R
, (1)

2. Gaussian blur: The 3D models have sharp edges even after the
pixelization, while the real pedestrians have a smoother look
from the lower quality of the captured images and the motion
blur when moving. To achieve a similar effect we use Gaussian
blur on the framebuffer texture, applied with a 3x3 kernel to

each pixel. The implementation is based on the one presented
by Daniel Illet [Ile22].

3. Grayscale: To achieve the grayscale visualization we take the
fragment colors of the synthetic models and use the weighted
Equation 2 to transform them into grayscale, preserving their
overall luminosity, where R, G, and B are the three color chan-
nels

Cgray = 0.30 ·R+0.59 ·G+0.11 ·B, (2)

4. Transparent Shadow Collector: As the ground plane is trans-
parent, we create a simple shadow catcher shader, which only
visualizes shadows. This is done by combining alpha blending
together with getting the light attenuation from directional light
that can be manually oriented to better represent the light direc-
tion present in the images. A default orientation of the lighting
sources is set orthogonal to the walking plane.

3.3. Occlusions between Real and Synthetic

One of the main problems with augmenting synthetic elements in
real footage is the incorrect occlusions that can happen if parts
of the background should hide a synthetic element, but it is just
rendered on top, creating incorrect depth cues. This becomes even

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

124



I. Nikolov / Augmenting Anomaly Detection Datasets with Reactive Synthetic Elements

(a) Synthetic behind - naive incor-
rect occlusion

(b) Synthetic behind - shader cor-
rect occlusion

(c) Synthetic front - shader correct
occlusion

Figure 4: Occlusion problem between real pedestrians and synthetic objects (Figure 4a). To address the problem, we use the calculated 3D
capsule volumes for real pedestrians and a custom transparency queue shader on both the capsules and the synthetic objects. The result
gives correct occlusions both when the synthetic object is behind (Figure 4b) and in front of the real pedestrians (Figure 4c). The synthetic
human is shown with a red tint for easier visualization.

more complicated when we factor in that real moving pedestrians
will be present in the images and the synthetic objects need to be
dynamically occluded as necessary. We address both problems in
the proposed rendering pipeline.

For the dynamic occlusion between real and synthetic objects,
we use the capsule volumes created for marking where the real
pedestrians bounding boxes are on the 3D walk path. As the trans-
parency queue is sorted normally back to front with objects in the
back rendered first, we create shaders with different queue num-
bers for the ground plane, the synthetic objects, and the capsule
volumes. We set the queue of the volumes lower than the synthetic
objects, but higher than the ground plane. This way whenever the
fully transparent capsule volume is in front of the synthetic 3D ob-
ject, it will be rendered after it and create an occlusion volume. If
the 3D object is in front of the capsule volume then it will be ren-
dered first and remain visible. The naive approach together with our
proposed solution are given in Figure 4.

For selecting parts of the background that should occlude the
synthetic objects, we introduce an initial manual masking step. The
user selects points on the image, which encompass parts of the
background that should occlude the synthetic 3D objects behind
them. Examples of this can be trees, lamp posts, bushes, signs,
etc. Once the user has selected everything that they deem an oc-
clusion part of the scene, these points are used as vertices to create
a polygonal plane, oriented toward the camera. As a basis for this,
we use the Unity library BMesh [Mic20]. The plane is given the
same transparent material with a render queue higher than the 3D
objects. Because the created polygonal plane is created closer to
the camera it will always occlude everything behind it (Figure 5).

3.4. Implemented Synthetic Anomalies

Examples of the three different types of anomalies implemented
for the paper are given in Figure 6. Most datasets connected to
outdoor urban anomaly detection focus on pedestrians and their
actions [AFG∗22, RJ20, LSJ13]. The UCSD dataset also contains
mainly pedestrian and vehicle anomalies. We have selected to focus
on generating synthetic pedestrian anomalies as for the first type of
anomalies incorporated in the presented solution. For this 6 models

(a) Background occlu-
sion problem

(b) Occlusion region
selection mesh

(c) Correct background
occlusion

Figure 5: Occlusion problem between the background and syn-
thetic objects (Figure 5a). To address this problem we introduce
an initial manual selection step, where the user can draw polygons
with the mouse over parts of the scene that should occlude the syn-
thetic objects (Figure 5b). The generated polygons have the same
shader material used for the dynamic occlusions with pedestrians.
The result can partially or fully occlude synthetic objects behind
parts of the scene (Figure 5c) The synthetic human is shown with a
red tint for easier visualization.

are selected from Adobe Mixamo [Bla14], representing men and
women with various skin colors and clothes. Each person is given
one normal walking and idle animation and 6 anomalous walking
animations - injured walk, injured jog, drunken walk, drunken jog,
limping walk and limping jog. In addition, each model can also have
6 anomalous behaviors - trip and fall, stumble back, fall forward,
jump forward, go limp and fall and backflip. The models can be set
to walk on the walking path together with the real pedestrians or
create further anomalous scenarios by walking on the grass paths.

The second type of anomaly we have selected is a class that is
very rarely represented in any real or synthetic urban area datasets
- animals. Most examples of such anomalies are made for non-
static datasets connected to self-driving cars and the created animal
anomalies are very rudimentary [GBŠ21,CLU∗21]. By introducing
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Human anomalies Animal anomalies Item anomalies

Figure 6: Example synthetic anomalies

animal 3D objects to the UCSD we aim to diversify its anomaly
detection potential. For our proposed solution we have selected 5
animal models - two cats, two dogs, and a horse from the dataset
provided by Truebone [Tru20]. All 3D models come with walk-
ing and idle animations. We have selected these animals as they
showcase various sizes and colors and will complicate anomaly de-
tection. The presence of the animals themselves is designated as an
anomaly.

The third type of anomaly we have implemented is considered
the most challenging - a person carrying an item and switching it
or dropping it on the ground. To our knowledge, there are no other
synthetic datasets that contain this type of anomaly, while the detec-
tion of such anomalies can be vital to the security of many places
like airports, bus stops, parks, etc. Two types of items are imple-
mented as part of this paper - a handbag and a briefcase. To be
able to create such anomalies without the need for synthetic pedes-
trians, we have chosen to use the already known positions of the
real people in the dataset. When this type of anomaly is selected,
real pedestrians are chosen and the synthetic items are connected
to their position, either in the left or right hand. The item is moved
with the tracked pedestrian until the tracking is lost at which point
the item is switched to the closest pedestrian or until the item is
dropped on the ground. The items move with the real pedestrians
(Figure 7a), behave as physical entities when dropped (Figure 7b),
and have the same correct occlusion properties as the other syn-
thetic objects (Figure 7c).

For making the movements and interactions between the syn-
thetic objects and real pedestrians more believable we utilize the
NavMesh library in Unity, with the detected real pedestrians set as
dynamic obstacles. Each time a new image is loaded together with
the detected pedestrians, the movement paths of all synthetic hu-
mans and animals are recalculated, and once they reach their goal
they transition to an idle state.

(a) Holding (b) Dropped (c) Occluded

Figure 7: Examples of synthetic bags augmented onto real pedes-
trians. The bag is attached to a random pedestrian and moves with
them(Figure 7a) until an anomaly event, is created where the bag
is dropped and behaves like a physical object, which can interact
with the real and synthetic pedestrians (Figure 7b). The bag has
the same shaders on it providing it with correct dynamic occlusion
from real people (Figure 7c)

3.5. Randomization for Data Gathering

As the main idea of the proposed solution is to be able to generate
both training and testing data, based on the requirements of the
users, we have added a large number of randomization parameters
that can be tweaked to create different image augmentations.

The main distinction is for generating training and testing data.
When training data is selected only synthetic pedestrians walking
and stopping on the main path are created. Their starting and goal
positions are selected randomly and the users can choose how many
pedestrians there can be or if their number should be randomized.
If testing data is selected then the user can choose which and how
many of the three anomaly types they would like to add to the data.
In addition, users can tweak the movement speed of the synthetic
objects, the type of movement and when an anomaly should hap-
pen. For synthetic items, the possible randomized factors are, to
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which person they will be attached, their position on the left or right
side of the pedestrian, as well as when the item will be dropped.

The number of augmented full video variations can be selected
so a large number of training and testing sequences can be created
one after the other. Finally, if anomalies are selected for synthetic
pedestrians and items the frame in which the anomaly occurs is
saved in a separate file so it can be used to create frame-level an-
notations. The augmented grayscale image and ground truths are
saved for each processed frame from a sequence.

4. Experiments

To show the usefulness of our proposed synthetic dataset rendering
pipeline we test five state-of-the-art anomaly detection models in
two main experiments - MNADpred / MNADrecon [PNH20], LGN-
Net [ZLL∗22], MPN [LCC∗21], and LNTRA [AZLL21].

4.1. Anomaly Detection Models Setup

Each of the five selected models is trained using the parameters
given by their respective authors. For the MNAD model, we train
both the predictive (MNADpred) and reconstruction (MNADrecon)
variations. For the MNADpred model we set both the compactness
and separation losses to 0.1, while for the MNADrecon, they are set
to 0.01. Both variations are trained using a batch size of 4 and a
learning rate of 0.0002 for 60 epochs and an Adam optimizer. For
the LGN-Net model, we set the compactness and separation losses
to 10 and 5 respectively. The Adam optimizer is used, together with
a batch size of 6 and a learning rate of 0.0002 for 60 epochs. For
the MPN model, we set the frame and feature reconstruction loss
weights to 1 and the feature distinction loss weight to 0.1. We again
use the Adam optimizer, with a batch size of 4 and a learning rate of
0.0001, and train for 100 epochs. Finally, for the LNTRA model we
use the skip frame-based implementation, with a pseudo anomaly
jump inpainting of 0.2 and jumps to 2,3,4,5 pseudo anomalies.
The batch size is set to 4 and the learning rate is set to 0.0001,
with the model trained for 60 epochs. For an evaluation metric for
both experiments, we use the widely-adopted area under the curve
(AUC) based on frame-level annotations.

4.2. Synthetic Testing Data Experiment

First, we want to see how the performance of the models fairs
against the more complex and diverse anomalies presented by our
pipeline. For this, we use both PEDS1 and PEDS2 and generate
three synthetic testing sets for each of the three main anomaly
types. To not mix real and synthetic anomalies we augment one
of the training video sequences for each subset. We generate 14
synthetic sequences for each anomaly type, giving us 8,672 frames
for PEDS1 and 6,496 frames for PEDS2. To make the testing sce-
nario harder we only use one anomalous object in each sequence.
We compare the performance of the models on the real anomalies
versus their performance on the synthetic ones.

4.3. Synthetic Training Data Experiment

The second experiment is aimed at seeing if introducing augmented
normal data to the training process can be used to boost the accu-
racy of the models. For this, we only use sequences from PEDS2 as

it is the more widely used one and select a number of the training
sequences of the UCSD dataset. We generate augmented variations
of them, using between 2 and 6 synthetic pedestrians that do not
exhibit anomalous behavior. We generate 68 training sequences,
containing 10,630 frames. We train the five models on a combina-
tion of real and synthetic training data and compare the results to
the performance of the models only trained on real data.

5. Results and Discussion

The results from the synthetic testing data experiments are given in
Table 1. We first test all the models on the real testing data and can
see that all of them achieve above 90% accuracy on frame-level
anomaly detection on the more widely used PEDS2 dataset and
above 75% accuracy on the PEDS1 dataset. Especially the LGN-
Net and LNTRA model achieving accuracies that would be consid-
ered enough to saturate the PEDS2 subset. Compared to that, the
synthetic anomalies achieve much lower accuracy, with the item
anomalies achieving the worst with an average of 43.76 for PEDS2
and 45.21 for PEDS1 and the animal anomalies having the best
average one between all models of 60.50 for PEDS2 and 63.80
for PEDS1. The synthetic human anomalies also prove problem-
atic with an average accuracy of 43.90 for PEDS2 and 47.12 for
PEDS1. These results can be explained by the animals being eas-
ier to detect as just being in the frame is considered an anomaly,
even though they have the largest difference between the separate
anomalies - horses being easy to detect, while cats proving much
harder. The small size of the item anomaly proves hard to detect.
Finally, humans prove hard as synthetic pedestrians stop moving
once they experience an anomaly. Another more problematic ex-
planation for the human anomalies is that the synthetic objects do
not completely blend with the real ones and the detectors are flag-
ging them as anomalies before an anomalous action is seen. To see
if this is a problem we do a second study on the PEDS2 subset by
running the synthetic human anomaly dataset through the detec-
tors trained on the combination of real and synthetic data. Here we
calculate the precision and recall of each model, as they will give
us a better idea of the false positive detection of normal synthetic
images as anomalies (Table 2).

We can see that the recall for (MNADpred), and especially
for (MNADrecon) and LNTRA gets significantly higher using the
model trained on real and synthetic images, pointing to the fact that
more synthetic data helps to detect the true anomalies. The preci-
sion for these models on the other hand also gets higher but much
less so, specifying that showing synthetic humans to the models
helps in misidentifying them as anomalies. The other two models
LGN-Net and MPN, on the other hand, get worse results, show-
ing that even showing synthetic humans to the models does not
guarantee that they will perform better when the anomalies are as
complicated as the ones generated by our solution.

The results from the synthetic training data test are given in Ta-
ble 3. For this test, we can show that some of the models like MPN
and MNADpred achieve higher frame-level accuracy when trained
on a combination of real and synthetic data, while other models
get varying degrees of lower accuracy, with the LGN-NET model
suffering the strongest degradation. The degradation in some of the
models can be explained by not enough variation with the gener-
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Table 1: Frame-level results from the five state-of-the-art models on the real vehicle anomalies in PEDS1 and PEDS2, together with the
human, animal, and item synthetic anomalies generated by our proposed pipeline. We can see that even though the real anomalies saturate
PEDS2 and to some extent PEDS1, the synthetic anomalies provide a much greater overall challenge. Thus making the dataset again useful
to researchers and valuable for testing.

PEDS1 Real PEDS1 Synthetic PEDS2 Real PEDS2 Synthetic
Models Vehicles Humans Animals Items Vehicles Humans Animals Items

MNADrecon 68.22 24.07 52.87 60.73 90.64 46.32 37.93 35.81
MNADpred 77.35 50.14 63.27 49.95 92.12 45.55 82.45 50.64
LGN-Net 78.94 48.79 65.83 56.68 97.07 62.49 45.51 36.58
MPN 80.23 46.56 64.91 49.70 96.13 23.22 49.31 37.70
LNTRA 88.77 56.49 72.13 18.55 96.50 41.93 87.32 58.08

Table 2: Second study using the synthetic human anomaly testing
data. The precision and recall of the five models trained only on
real data and trained on real and synthetic data are compared to
see if exposing the models to synthetic humans throughout train-
ing will have large changes in their performance. This is done as a
measure to verify if the generated synthetic data has a large distri-
bution gap with the real images.

Real Real + Synthetic
Model Precision Recall Precision Recall

MNADrecon 0.239 0.420 0.519 0.645
MNADpred 0.271 0.932 0.289 0.934
LGN-Net 0.299 0.967 0.276 0.853
MPN 0.199 0.544 0.173 0.432
LNTRA 0.189 0.454 0.338 0.835

Table 3: Frame-level results from the five state-of-the-art anomaly
detector models trained only on the real data compared to be-
ing trained on a combination of real and synthetic data. Only the
PEDS2 subset of the UCSD dataset is used. We can see that two of
the models achieve higher accuracy, while the other three achieve
slightly worse results, which can be attributed to not enough diver-
sity of the synthesized data.

Model AUCreal AUCreal+synthetic

MNADrecon 90.64 88.17
MNADpred 92.12 95.33
LGN-Net 97.07 91.24
MPN 96.13 96.94
LNTRA 96.50 94.92

ated augmented training data resulting in overfitting. This can be
remedied by generating training data from more of the real data
and using a larger number of synthetic objects to give a better vari-
ation.

6. Conclusion

We propose a rendering pipeline for generating training and test-
ing data in surveillance anomaly detection, focusing on augment-

ing the well-known UCSD dataset. To bridge the gap between syn-
thetic and real data, we introduce a novel approach that combines
real backgrounds and moving pedestrians with synthetic objects.
This augmentation ensures accurate occlusions between real and
synthetic objects, along with preprocessing techniques to enhance
their blending. The pipeline is versatile, allowing the generation of
diverse normal and anomalous data, and can be expanded to in-
clude different scenarios, emergencies, and synthetic objects. Fur-
thermore, we provide both frame-based and pixel-based annota-
tions.

To evaluate the effectiveness of our pipeline, we generate three
types of synthetic anomalies: synthetic pedestrians in anomalous
scenarios, animals within the camera’s field of view, and real pedes-
trians carrying and dropping synthetic items. We select five state-
of-the-art anomaly detection models that exhibit over 90% ac-
curacy on simple real anomalies already present in the dataset.
However, when tested on our generated synthetic anomalies, the
accuracy of these models significantly decreases. This highlights
the increased difficulty and variability introduced by our synthetic
anomalies, making the dataset a valuable testbed for researchers to
evaluate new anomaly detection methods. Additionally, we gener-
ate augmented normal data for training, demonstrating that it can
improve the accuracy of certain models.

For future work, we intend to extend the pipeline to incor-
porate other widely used anomaly datasets such as Avenue and
ShanghaiTech, while also introducing new anomalies and scenar-
ios. We also plan to enhance the rendering pipeline to simulate
weather condition changes like rain, snow, and fog. Previous re-
search [NPL∗21] has shown that such environmental factors can
negatively impact model performance in real-world deployments,
making it essential to include them for comprehensive evaluation.
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