
EG UK Computer Graphics & Visual Computing (2023)
D. Hunter and P. Vangorp (Editors)

SunburstChartAnalyzer: Hierarchical Data Retrieval from Images
of Sunburst Charts for Tree Visualization

Prakhar Rastogi, Karanveer Singh and Jaya Sreevalsan-Nair †

Graphics-Visualization-Computing Lab,
International Institute of Information Technology Bangalore, India

Abstract
Data extraction from visualization is a challenging problem in computer vision owing to the huge “design space of possible vis
idioms.” Different visualizations pose different challenges in automated data extraction from their images, which is needed in
document analysis. In the case of sunburst charts for hierarchical data, the extracted data has to be also correctly organized
as a tree data structure. Overall, data extraction has to consider different components of a chart image, such as text, annular
sectors, levels, etc., and their ordering. We propose an end-to-end algorithm, SunburstChartAnalyzer, for data extraction from
sunburst charts. The algorithm includes chart classification, component extraction, and hierarchical data organization. We
further propose a composite metric to evaluate the correctness of SunburstChartAnalyzer. Our experimental results show that
our proposed method works for trees of all sizes, and particularly well for shallow and medium-depth trees.
Keywords: Hierarchical data, Visualization, Sunburst charts, Circle objects, Tree data structure, Optical Character Recognition,
Text detection, Hough transform, Geometry

CCS Concepts
• Human-centered computing → Visualization techniques; Accessibility systems and tools; • Computing methodologies →
Information extraction; Image processing;

1. Introduction

The proliferation in the use of charts in various data science appli-
cations has led to active research in automated data retrieval from
these charts [DSN22, DDSN21a, DDSN21b, CJP∗19]. The data re-
trieval requires a combination of image processing and computer
vision methods where it is chart-specific, owing especially to the
huge “design space of possible vis idioms” [Mun14]. Sunburst is
a widely used hierarchical data visualization that uses concentric
circles to encode hierarchical levels, grows outwards with the tree,
and its annular sectors represent tree nodes. With their complex ge-
ometric structure, these chart images pose a challenge to extract
the circular object geometry to retrieve the data and organize it in
the tree format. At the same time, its structured geometry can be
exploited for the task of automated data extraction.

Here, we propose SunburstChartAnalyzer, an end-to-end algo-
rithm that involves image processing and machine learning meth-
ods for efficient and accurate data retrieval from sunburst chart
images. For validation, we propose the use of tree edit distance
to compare the source and extracted data of sunburst images that

† Thanks to Machine Intelligence and Robotics (MINRO) grant from the
Government of Karnataka and IIITB for funding. email: jnair@iiitb.ac.in

Figure 1: Our proposed workflow for SunburstChartAnalyzer for
hierarchical data retrieval from sunburst chart images.

consider both labels (text) and tree structure. We run our experi-
ments on sunburst chart images taken from the internet as well as
synthetically generated for qualitative and quantitative analysis, re-
spectively. Our proposed workflow and sample results are shown in
Figures 1 and 2, respectively.

One of the motivations behind this line of work is to improve the
accessibility of charts for the visually challenged, required in doc-
ument analysis [CJP∗19]. Similar work has been done for scientific
diagrams [RAK∗20], and its extension to sunburst images is novel.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/cgvc.20231200 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-6333-4161
https://doi.org/10.2312/cgvc.20231200


Prakhar Rastogi, Karanveer Singh & Jaya Sreevalsan-Nair / SunburstChartAnalyzer

Figure 2: Results from SunburstChartAnalyzer with source image of sunburst and its annotated version for sunburst charts (a) with and (b)
without a filled center ((b) has an unlabeled root), respectively. (Input image source: from the Internet).

2. Methodology

SunburstChartAnalyzer has three key steps, namely, (S1S1S1) chart type
classification, (S2S2S2) chart component detection, and (S3S3S3) hierarchical
data extraction.

S1S1S1 – Chart Type Classification: We first determine the chart type
from the input image, such that, if it is of sunburst type, it proceeds
with the workflow, otherwise it is rejected. We use supervised ma-
chine learning and deep learning models in our chart type classifier.
We compare the performance of different models to determine the
optimal one for our workflow.

Given the paucity of sunburst chart images, we first curate the
training dataset using images generated from synthetic data. We
ensure the class balance in the dataset, and also specifically include
other charts with circular objects, e.g., pie charts, scatter plots, and
bubble plots, in the dataset to improve the classification of sunburst.

S2S2S2 – Chart Component Detection: Chart component detection
has four key sequential steps, namely, (S2aS2aS2a) circle detection, (S2bS2bS2b)
text detection, (S2cS2cS2c) text removal, and (S2dS2dS2d) line detection.

(S2aS2aS2a) Circle Detection: The most observable feature of a sun-
burst chart is the concentric circles with its truncated or annular
sectors. While Circle Hough Transform (CHT) [DH72] is suit-
able for extracting a single circle, it does not perform as desired
for concentric circles. It is difficult to generalize parameters for
CHT across different circles. Hence, we use CHT to extract one
circle to determine its center. We then use Line Hough Transform
(LHT) [DH72] to find partitions or separators between sectors.

(S2bS2bS2b) Text Detection: Text must be detected and removed prior
to data extraction from the geometry in the image. We use the oft-
used optical character recognition (OCR) for text detection. The
output of this step is textboxes and its positions, which are essen-
tial to determine the hierarchy encoded in the sunburst. For every
detected textbox, we calculate its distance from the center of the
circle obtained in S2aS2aS2a. We sort these distances and group the proxi-
mate textboxes to find siblings in the tree data structure. This is the
first cut computation of the hierarchical levels in the tree data.

(S2cS2cS2c) Text Removal: Here, care is taken to remove text alone
and retain its background in the sectors. This ensures no artifi-
cial discontinuities in the geometry that could otherwise poten-
tially interfere with its extraction. Thus, the desired outcome is

the source image without any text rendering. We use text inpaint-
ing [BBS01, KB12] to restore the background pixels (Figure 3).

We first determine the size of the textboxes detected in S2bS2bS2b to
create white rectangular masks for textboxes. The remaining im-
age is rendered black, thus creating a binary image (Figure 3(a)).
Our approach is to create a correctly oriented and symmetric mask
about the textbox-center. We initially use the length of the textbox
through its center as the length of a line mask, and the line is padded
by the width of the textbox, again taken at its center (Figure 3(left)).
However, we observe that such a mask interferes with the borders
of the sunburst chart, thus affecting our line detection in S2dS2dS2d.

Hence, we improve the mask by using the corners of the textbox.
We calculate the distances between the corners/vertices of the rect-
angle and the mid-points of the lines joining them. We then use the
ratio of the largest and the shortest distance to determine the end-
points of the line mask and its padding to cover the textbox entirely
to obtain compact masks (Figure 3 (right)). Thus, our optimization
step provides a mask correction by visibly maximizing the length
of masking lines and minimizing the thickness for each text de-
tected. We observe that this modified mask improves the detection
of vertically oriented text especially.

(S2dS2dS2d) Line Detection: Given the limitation of CHT in extract-
ing concentric circles, it is important to accurately detect lines that
function as sector separators. SunburstChartAnalyzer is based on
the assumption that these lines can be detected more accurately and
contiguously in the text-free image. Line detection entails standard
image pre-processing steps on the text-free image. We convert the
image to grayscale, apply slight blurring to it, and finally use Canny
edge detection to get the edge image (Figure 4(a)).

We now apply the probabilistic LHT (PHT) to the edge im-
age [KEB91, MGK00] to localize and assemble the various line
segments/edges in the source image. We observe that PHT also
gives noise that is filtered out using a specific criterion. This cri-
terion is that we retain the good lines if the pixels satisfy a line
equation. We also check if the line segment is not farther than 20
pixels from the circle center from S2aS2aS2a, as a heuristic thresholding
step. This step gives desired results as shown in Figure 4(b)-(c).

Using these filtered lines, the steps for extracting hierarchical
levels (Figure 4(d)) are:

1. For each hierarchical level, we determine the equation of the
(concentric) circle passing through the midpoint of the diagonal
of the textboxes detected in S2bS2bS2b.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

98



Prakhar Rastogi, Karanveer Singh & Jaya Sreevalsan-Nair / SunburstChartAnalyzer

Figure 3: Text removal from the image in (a) to give the output in (b), using (left) initial mask and (right) optimized mask.

Figure 4: Line detection using (a) Canny edge detection, and (b,c) our line detection algorithm before and after filtering out the noise.
Extraction of hierarchical levels in S2dS2dS2d is diagrammatically explained in (d).

2. Using the obtained circle equation for each concentric cir-
cle/level and the inside-outside test on the endpoints of the line
segments, we find all the line segments that intersect the circle.

3. We store for each hierarchical level its corresponding intersect-
ing lines. The levels start from the root as 0 and are incremented
by 1 for every circle that occurs in the direction of a radial line
moving away from the center.

We also remove duplicate lines which are detected by check-
ing the angle between any two extracted lines. We compute these
pairwise angles using trigonometric relationships and heuristically
filter out lines that make the pairwise angle less than 3.5o, thus
eliminating the longer lines exclusively.

S3S3S3 – Hierarchical Data Extraction: Using the text and hierar-
chical levels, we now assign parents to each of the extracted texts.
These textboxes are equivalent to the nodes of the tree data. Every
node represents an annular sector and has the following attributes:
(i) text, (ii) the angle subtended by the text at the circle center, (iii)
the parent and children of that node, (iv) the angle range spanned
by the node and (v) the ratio of the sector area to that of the circle.

In a few of the sunburst chart images, we encounter a different
but specific rendering style of an unfilled and unlabeled innermost
circle for the root node (Figure 2(b)). In such charts, we first fill the
innermost circle, thus, introducing a dummy root node with empty
text, prior to applying S1S1S1-S3S3S3.

We thus construct the tree from the inside outwards, and assign a
parent to each node recursively. In sunburst, the sector angle of the
parent is fragmented by those of the children (Figure 4(d)). Hence,
we find a node with a larger angle range within which the angle
range of a concerned node lies, thus establishing that the former
is the parent of the latter. A detailed explanation of how the tree
construction algorithm organizes data is as follows:

1. For every node in level i, we find the pair of consecutive sector
separators in level (i+1) that physically contain the node. This
is done by comparing the angle ranges assigned to the pair of
nodes in levels i and (i+1).

2. Whenever such a pair is encountered, we assign the node in level
i as the parent of the node in level (i+1).

3. Repeating #1 and #2 for all levels moving outwards from the
root, we obtain the tree representation of the data extracted from
the sunburst chart image.

Evaluation and Validation: For evaluation and validation of our
proposed algorithm, we use the tree edit distance (TED) [ZSS92]
and its corresponding similarity score [SGAM∗15] as a metric.
TED is the cost of converting one tree into another through the per-
missible operations: (i) insertion of a node, (ii) deletion of a node
and (iii) renaming of a node. Each of these operations has a cost
assigned to it using which the final cost (the tree edit distance) is
calculated. We have used the TED values to compute the similarity
between the original tree and the tree extracted from our algorithm.
The similarity score based on TED [ZSS92, SGAM∗15] between
trees Ti and Tj, with d = TED(Ti,Tj) is:

sim(Ti,Tj) =
1√
1+d

.

Here, we calculate two different kinds of similarities based on
TED: Structural Similarity (SS), and Data Similarity (DS). The
SS is a measure of how similar the structure of the extracted tree
and the original tree is. We calculate SS by only taking into account
the costs of inserting and deleting a node. The DS is a measure of
how accurately is the data being extracted. It is calculated using
TED based only on the cost of renaming a node between two trees.

Implementation: For S1S1S1, we created the training dataset for
chart classification. It contains 400 images comprising five differ-
ent types of charts, of which 200 images are of sunburst charts, 50

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

99



Prakhar Rastogi, Karanveer Singh & Jaya Sreevalsan-Nair / SunburstChartAnalyzer

Figure 5: Results of SunburstChartAnalyzer for line detection in a sample of the images of a sunburst (a,b) with filled and (c,d) unfilled cen-
ters/unlabeled roots, and created with (a,c) shallow (15 nodes) and (b,d) deep (35 nodes) trees (Input image source: synthetically generated
by authors). (e) Our algorithm fails for a highly fragmented tree (Input image source: [YCHL22]).

of bar charts, 50 of pie charts, 50 of scatter plots, and 50 of bub-
ble plots. The images are equally downloaded from the internet and
synthetically generated using input datasets and third-party visual-
ization libraries (e.g., Plotly [Plo15]).

For S2bS2bS2b, we specifically used Keras OCR [C∗15]. For
S2cS2cS2c and S2dS2dS2d, we used the functions cv2.inpaint and
cv2.HoughLinesP from OpenCV library [Bra00]. For eval-
uation and validation, we used the Zhang-Shasha tree edit dis-
tance [ZZL∗14] in the zss Python module [zss]. Before calculat-
ing the tree edit distance for the original and extracted tree, we
first sorted each level of both trees alphabetically. This was done
because the Zhang-Shasha tree edit distance [ZZL∗14] algorithm
treats trees with same structure but a different order of children
as different. Thus sorting would lead to consistency in the or-
der of children in both trees. Thus resulting in accurate edit dis-
tances. .The source code of this paper is at the GitHub Repository
http://bit.ly/SunburstChartAnalyzer.

3. Experiments & Results

We experimented on Convolutional Neural Networks (CNN) and
Support Vector Machines (SVM) for S1S1S1. We designed a 6-layer
CNN, with 4 convolutional layers and 2 fully connected layers. The
test/train ratio split of the dataset also ensures class balance across
the five chart types. We got accuracies in the range of 50-97% for
CNN depending on the weight initialization of the model, for which
we attribute the inconsistency in accuracy to the small size of the
training dataset. Thus, we created an SVM model with a parame-
ter setting of C=1, kernel=linear, and gamma=auto. SVM
works only on a single-dimensional image. Hence, we converted
the RGB color images to grayscale. On using stratified 5-fold Cross
Validation for evaluating our model, we got an average accuracy of
86.5% and an F1 score of 0.869, thus proving the SVM is an ap-
propriate classification model for our workflow. We implemented
the SVM and CNN using the scikit-learn library [P∗11] and the
TensorFlow library [A∗15], respectively.

Our results for a sample image sourced from the internet and
from synthetic images are in Figures 2 and 5, respectively. For the
quantitative results of similarity scores, we synthetically generated
images of sunbursts from data presented as tree data structures. We
grouped the data/charts into two types of categories: (i) filled vs
unfilled centers for the root node, and (ii) different tree depths,
i.e., deep, medium, and shallow for trees with 35, 25, and 15 nodes,

Table 1: Average Structural Similarity (SS) obtained for each cate-
gory, calculated from the output of SunburstChartAnalyzer and the
input data used for synthetically generated images. For each tree
size and center type, 10 images were used for evaluation.

Image Deep Tree Medium Tree Shallow Tree
Group 35 nodes 25 nodes 15 nodes

Filled Center 0.51 0.71 0.75
Unfilled Center 0.64 0.81 0.80

respectively. The validation datasets are generated with an auto-
mated script using the Plotly library [Plo15]. For our validation, we
used 10 images in each group. Table 1 shows the group averages of
similarity scores (SS).

We observed that data similarity (DS) scores are heavily depen-
dent on the quality of the chart images, which influences the quality
of the OCR text detection results inS2bS2bS2b. DS score is consistently 1.0
for high-resolution images, e.g., those in Table 1, but is inconsis-
tent for low-resolution (LR) images sourced from the Internet. The
choice of OCR software also influences the DS scores; e.g., keras
OCR does not perform well for LR inputs.

SunburstChartAnalyzer works well for shallow and medium-
depth trees. But the similarity scores to the input data (SS) deteri-
orate for deeper trees, where the sector separators get crowded and
the accuracy of line detection reduces. We show this in an extreme
case of an over-fragmented tree (Figure 5(e)).

4. Conclusions

SunburstChartAnalyzer is generalized for various types of sunburst
charts and extracts data from them in tree format. Our contributions
are in the classification of chart images using learning models, data
extraction using image processing and geometric methods, and au-
tomated plot generation for creating image datasets. Our method
works in all cases except those with high fragmentation, which will
be addressed in the future. Also, we can specifically improve the
chart type classification using CNNs, and text detection using state-
of-the-art techniques (e.g., Google Cloud Vision API [MCF∗16]).
The extracted text can be used for generating text summaries, it can
be used as alt text in online documents, or it can be used with text-
to-speech converters to improve the accessibility of the graph for
visually impaired people.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

100

http://bit.ly/SunburstChartAnalyzer


Prakhar Rastogi, Karanveer Singh & Jaya Sreevalsan-Nair / SunburstChartAnalyzer

References
[A∗15] ABADI M., ET AL.: TensorFlow: Large-scale machine learning

on heterogeneous systems, 2015. Software available from https://
www.tensorflow.org/. URL: https://www.tensorflow.
org/. 4

[BBS01] BERTALMIO M., BERTOZZI A. L., SAPIRO G.: Navier-stokes,
fluid dynamics, and image and video inpainting. In Proceedings of the
2001 IEEE Computer Society Conf. on Computer Vision and Pattern
Recognition (CVPR) (2001), vol. 1, IEEE, pp. I–I. 2

[Bra00] BRADSKI G.: The OpenCV Library. Dr. Dobb’s Journal of Soft-
ware Tools (2000). 4

[C∗15] CHOLLET F., ET AL.: Keras, 2015. https://github.com/
fchollet/keras – Last accessed on February 15, 2023. URL:
https://github.com/fchollet/keras. 4

[CJP∗19] CHOI J., JUNG S., PARK D. G., CHOO J., ELMQVIST N.: Vi-
sualizing for the Non-Visual: Enabling the Visually Impaired to Use Vi-
sualization. In Computer Graphics Forum (2019), vol. 38, Wiley Online
Library, pp. 249–260. doi:10.1111/cgf.13686. 1

[DDSN21a] DADHICH K., DAGGUBATI S. C., SREEVALSAN-NAIR J.:
BarChartAnalyzer: Digitizing Images of Bar Charts. In Proceedings
of 1st International Conference on Image Processing and Vision Engi-
neering (IMPROVE) (2021), INSTICC, SciTePress, pp. 17–28. doi:
10.5220/0010408300170028. 1

[DDSN21b] DADHICH K., DAGGUBATI S. C., SREEVALSAN-NAIR J.:
ScatterPlotAnalyzer: Digitizing Images of Charts Using Tensor-based
Computational Model. In International Conference on Computational
Science, Computational Science – ICCS 2021, Part V, Lecture Notes in
Computer Science, volume 12746 (Cham, 2021), Paszynski M., Kran-
zlmüller D., Krzhizhanovskaya V. V., Dongarra Jack J.and Sloot P. M.,
(Eds.), Springer International Publishing, pp. 70–83. doi:10.1007/
978-3-030-77977-1_6. 1

[DH72] DUDA R. O., HART P. E.: Use of the Hough transformation to
detect lines and curves in pictures. Communications of the ACM (CACM)
15, 1 (1972), 11–15. 2

[DSN22] DAGGUBATI S. C., SREEVALSAN-NAIR J.: ACCirO: A Sys-
tem for Analyzing and Digitizing Images of Charts with Circular Ob-
jects. In Computational Science – ICCS 2022, Proceedings of the
22nd International Conference, Part III, chapter 50 (Cham, 2022),
Springer International Publishing, pp. 605–612. doi:10.1007/
978-3-031-08757-8_50. 1

[KB12] KHODADADI M., BEHRAD A.: Text localization, extraction and
inpainting in color images. In 20th Iranian Conference on Electrical
Engineering (ICEE2012) (2012), IEEE, pp. 1035–1040. 2

[KEB91] KIRYATI N., ELDAR Y., BRUCKSTEIN A. M.: A probabilistic
Hough transform. Pattern Recognition 24, 4 (1991), 303–316. 2

[MCF∗16] MULFARI D., CELESTI A., FAZIO M., VILLARI M., PULI-
AFITO A.: Using Google Cloud Vision in assistive technology scenar-
ios. In 2016 IEEE symposium on computers and communication (ISCC)
(2016), IEEE, pp. 214–219. 4

[MGK00] MATAS J., GALAMBOS C., KITTLER J.: Robust detection of
lines using the progressive probabilistic Hough transform. Computer
Vision and Image Understanding 78, 1 (2000), 119–137. 2

[Mun14] MUNZNER T.: Visualization Analysis and Design. CRC press,
2014. 1

[P∗11] PEDREGOSA F., ET AL.: Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research 12 (2011), 2825–2830.
4

[Plo15] PLOTLY TECHNOLOGIES INC.: Collaborative Data Science,
2015. Last accessed on February 15, 2023. URL: https://plot.ly.
4

[RAK∗20] ROY A., AKROTIRIANAKIS I., KANNAN A. V., FRADKIN
D., CANEDO A., KONERIPALLI K., KULAHCIOGLU T.: Diag2graph:
representing deep learning diagrams in research papers as knowledge

graphs. In 2020 IEEE International Conf. on Image Processing (ICIP)
(2020), IEEE, pp. 2581–2585. 1

[SGAM∗15] SIDOROV G., GÓMEZ-ADORNO H., MARKOV I., PINTO
D., LOYA N.: Computing text similarity using tree edit distance. In
2015 Annual Conf. of the North American Fuzzy Information Processing
Society (NAFIPS) held jointly with 2015 5th World Conf. on Soft Com-
puting (WConSC) (2015), IEEE, pp. 1–4. 3

[YCHL22] YE S., CHEN D., HAN S., LIAO J.: 3D Question Answer-
ing. IEEE Transactions on Visualization and Computer Graphics (early
access) (2022), 1–16. doi:10.1109/TVCG.2022.3225327. 4

[zss] zss 1.1.4. https://pypi.org/project/zss/1.1.4/ –
Released: May 26, 2016. URL: https://pypi.org/project/
zss/1.1.4/. 4

[ZSS92] ZHANG K., STATMAN R., SHASHA D.: On the editing distance
between unordered labeled trees. Information Processing Letters 42, 3
(1992), 133–139. 3

[ZZL∗14] ZHENG W., ZOU L., LIAN X., WANG D., ZHAO D.: Efficient
graph similarity search over large graph databases. IEEE Transactions
on Knowledge and Data Engineering (TKDE) 27, 4 (2014), 964–978. 4

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

101

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.1111/cgf.13686
https://doi.org/10.5220/0010408300170028
https://doi.org/10.5220/0010408300170028
https://doi.org/10.1007/978-3-030-77977-1_6
https://doi.org/10.1007/978-3-030-77977-1_6
https://doi.org/10.1007/978-3-031-08757-8_50
https://doi.org/10.1007/978-3-031-08757-8_50
https://plot.ly
https://doi.org/10.1109/TVCG.2022.3225327
https://pypi.org/project/zss/1.1.4/
https://pypi.org/project/zss/1.1.4/
https://pypi.org/project/zss/1.1.4/

