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Abstract
Most existing solutions for single-view 3D object reconstruction are based on deep learning with implicit or voxel representa-
tions of the scene and are unable to produce detailed and high-quality meshes and textures that can be directly used in practice.
Differentiable rendering, on the other hand, is able to produce high-quality meshes but requires several images of an object.
We propose a novel approach to single-view 3D reconstruction that uses procedural generator input parameters as a scene
representation. Instead of estimating the vertex positions of the mesh directly, we estimate the input parameters of a procedural
generator by minimizing the silhouette loss function between reference and rendered images. We use differentiable rendering
and create partly differentiable procedural generators to use gradient-based optimization of the loss function. It allows us to
create a highly detailed model from a single image taken in an uncontrolled environment. Moreover, the reconstructed model
can be further modified in a convenient way by changing the estimated input parameters.

CCS Concepts
• Computing methodologies → Rendering; Shape modeling;

1. Introduction

The video game and movie industries require an extensive range
of objects to populate virtual environments, often need realistic-
looking models based on real-life objects. While modern tech-
nologies for scanning and 3D reconstruction can produce high-
quality models, they often require complex equipment and signif-
icant amounts of time. Additionally, it may be impossible to scan
an object or obtain a sufficient number of images. For these cases,
single-view 3D reconstruction methods are being developed. Deep
learning methods such as [PKS∗19] and [YLZ22] have made re-
markable progress, but its quality is still often insufficient for prac-
tical use. Usually deep learning methods do not consider an im-
portant aspect of humans’ perception: structure and object compo-
nents. Procedural generation is an alternative method for obtain-
ing 3D models. Procedural models consist of rules that establish a
correlation between input parameters and 3D objects of a specific
class. In this paper, we propose a novel approach that utilizes pro-
cedural generation for single-view and multi-view mesh and tex-
ture reconstruction. Instead of estimating the vertex positions of
the mesh directly, we estimate the input parameters of a procedu-
ral generator through the silhouette loss function between reference
and rendered images. By using differentiable rendering and creat-
ing partly differentiable procedural generators for gradient-based.
Our approach also allows for convenient model modifications by
changing the estimated input parameters, such as creating new lev-

els of detail, altering the geometry and textures of individual mesh
parts, and more.

2. Related work

2.1. Single-view 3D reconstruction

Single-view 3D reconstruction presents a significant challenge as
it requires prior knowledge of the real world. Therefore, learning-
based methods have become dominant in this field. These meth-
ods use different scene representations, such as meshes [WZL∗18]
[NHG∗20] [YTG21], voxel grids [CXG∗16] [PBF20], point clouds
[FSG17] [CHLZ21] or implicit functions [CLG∗19]. Among these
methods, mesh reconstruction is the most relevant to our work. The
majority of single-view 3D mesh reconstruction methods employ
an encoder-decoder architecture where the encoder extracts fea-
tures from the image and the decoder deforms an initial mesh to
the target shape. It is noteworthy that these methods are trained and
evaluated on the same object categories. Further work [TRR∗19]
showed that such approaches to single-view 3D reconstruction pri-
marily perform recognition rather than reconstruction. There are
also a few research works focused on the generalized single-view
3D reconstruction [ZZZ∗18] [YLZ22], yet the quality of models
reconstructed from a single image is often insufficient for practical
use.
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2.2. Differentiable rendering

Physically-based differential rendering [LHK∗20] [ZYZ21] is an
active area of research related to accurate 3D models and material
reconstruction. Such algorithms provide a gradient of a silhouette
loss function with respect to the scene parameters that can be then
minimized with the gradient descent. An appropriate scene repre-
sentation is also important for this approach. Mesh-based represen-
tation has been the most widely studied, and specific regulariza-
tion [WFK21] and modification for the Adam optimizer were pro-
posed [WS21] for this task. Recently, Nicolet et al. combined recent
advancements in this field in their work [NJJ21] that significantly
improved the quality of the resulting mesh. Other scene representa-
tions have also been studied. Vicini et al. [VSJ22] proposed an algo-
rithm for differentiable signed distance function rendering and used
it for multi-view reconstruction. Differential rendering can also be
combined with deep learning [YLZ22] to provide face quality su-
pervision and regularization.

2.3. Alternative scene representations

Mesh-based or surface-based representations enable efficient ren-
dering and produce easy-to-use meshes as a result of their work.
However, image-based optimization of surface geometry can be
challenging due to the non-convexity of such an optimization. Vol-
umetric representations [LSS∗19] [VJK21] can reliably reach a de-
sirable minimum, but are usually unable to capture finer details.
Alternatively, point-based shape representations have also been
shown to produce high-quality scene reconstructions [YSW∗19]
[RFS22]. Another key tool for scalable scene representation is
the use of coordinate-based neural networks, also known as neu-
ral fields [MST∗21] [FKYT∗22] [MESK22], which push beyond
the resolution limits of discretized grids and generalize to higher-
dimensional signals, such as directional emission [MST∗21]. Neu-
ral fields [MESK22] have demonstrated the ability to handle com-
plex scenes and produce compelling results within seconds. How-
ever, to utilize the obtained results, one typically needs to convert
them from an alternate representation into a 3D mesh, as most ren-
dering engines work primarily with meshes. Such transformations
can pose a significant challenge, resulting in suboptimal models
with a large triangle count and lower visual quality.

2.4. Procedural generation

Procedural content generation is a well-known approach to creating
diverse virtual worlds. It is used on different levels, ranging from
individual objects to large-scale open worlds and game scenarios
[HMVDVI13] [FE17]. Many procedural object generators work as
functions that transform a vector of numerical parameters into a
3D mesh of a specific class, e.g., trees, buildings. There are a few
works focusing on inverse procedural generation, which involves
estimating the input parameters for the generator given an input
model or image [SPK∗14] [GJB∗20] [GSF22]. However, as non-
trivial procedural generators are non-invertible functions, existing
works have limited generalization ability and focus on very specific
procedural models.

Figure 1: The mesh reconstruction process consists of a procedu-
ral generator creating a mesh from input parameters, which is then
rendered using a differentiable renderer. The silhouette loss func-
tion is then calculated between the rendered output and reference
image, with the gradient of this function being back-propagated to
the optimizer to modify the input parameters.

3. Method overview

The proposed method implements object and texture reconstruction
from one or multiple images using differentiable rendering and pro-
cedural generators. The method consists of three steps: mesh recon-
struction, texture reconstruction, and post-processing. Both mesh
and texture reconstruction are based on the minimization of loss
functions (silhouette and texture loss, respectively). We define all
scene parameters as π=(P,T,S,C), where P is the input parameters
of the procedural generator, T is an object’s texture (or textures), S
is global scene parameters (e.g., light sources, ambient light), and
C is cameras’ parameters.

Silhouette loss is defined as follows:

Losss(P,T,S,C) =
1
N

∗
N

∑
i=1

MSE(Renders(Gen(P),T,S,C),Mi)

Texture loss:

Losst(P,T,S,C) =
1
N

∗
N

∑
i=1

MSE(Rendert(Gen(P),T,S,C),Ri)

Ri and Mi are reference images and binary masks for these images
respectively, N is a number of reference images given, Gen(P) =
(pos,norm, tc) is a mesh created by procedural generator, Renders
is an image of a scene rendered in silhouette mode and Rendert is
an image of a scene rendered in default mode, with textures and
light.

In the first step, we find P∗,C∗ = argmin
P,C

{Losss(P,T,S,C)}

or P∗ = argmin
P

{Losss(P,T,S,C)} if cameras’ positions and set-

tings are given. In the texture reconstruction steps we find T∗ =
argmin

T
{Losst(P∗,T,S,C∗)} with the fixed cameras and geome-

try. For both steps, we use an iterative gradient-based optimization
strategy. More details about the optimization process are provided
below, but the key point is that it requires gradients of the loss func-
tion with respect to scene parameters. dLosst

dT and dLosss
dC can be eas-

ily obtained from the differentiable renderer. Our implementation
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uses Mitsuba 3 [JSR∗22] for this purpose. Obtaining dLosss
dP is a

bit more complicated. Considering the chain rule and the fact that
silhouette does not depend on model’s normal vectors and texture
coordinates, we get dLosss

dP = dLosss
dPos ∗ dPos

dP . dLosss
dPos also comes from

differentiable renderer and jacobian dPos
dP is obtained from procedu-

ral generator. The whole process of optimizing the silhouette loss
function is illustrated in Figure 1.

4. Differentiable procedural generators

The pipeline described in the previous section treats the proce-
dural generator as a black-box function that can produce a mesh
(pos,norm, tc) and jacobian dPos

dP from an input vector P. In prac-
tice, it is impossible to make a generator of non-trivial objects that
works as a smooth, differentiable function. This is primarily due to
objects having discrete properties, such as the number of floors in
a building. For consistency, we still include these parameters in the
vector P, but for each parameter Pd of this type, we assume that
dPos
dPd

= 0.

For this work, two different procedural generators are created:
for dishes and buildings. Both were developed from scratch using
the CppAD automatic differentiation library [Bel12] to obtain the
required derivatives. The dishes generator (Figure 2) is an exam-
ple of a simple and easy-to-differentiate algorithm that only has
one binary parameter. In contrast, buildings have numerous dis-
crete features, and the building generator (Figure 3) was created
to demonstrate the ability of our method to handle such challenges.

Figure 2: Dishes generator. Top row: generation steps. 1) Create
a spline from a vector of vertical offsets. 2) Transform it to create
a closed spline with thickness. 3) Rotate it to get the dish body.
4) (Optional) Create a handle from a circle spline and a vector of
offsets. The number of points in splines can be changed to produce
different levels of detail. Bottom row: some examples of generated
dishes. 1) Mug 2) Tea cup 3) Bowl 4) Jar

5. Optimization

Even simple procedural models from previous section prove to be
extremely challenging functions to optimize due to two factors: the
large number of non-linear internal dependencies in the generator
and heterogeneous input parameters, some of which are integers
with a limited set of possible values. Previous efforts at 3D recon-
struction with procedural generators [GSF22] relied on a specific
implementation of the genetic algorithm [Mit98] to find solutions

Figure 3: Building generator. Top row: Levels of detail for the
same building. 1) Box with a roof. 2) Only outer walls. 3) Building
without small details 4) Full detailed building Bottom row: some
examples of generated buildings

Figure 4: Results of model reconstruction after each optimization
step. From left to right: reference image, genetic algorithm with
128x128 rendering resolution, gradient descent with resolution of
256x256 and 512x512 respectively

without gradient calculation, but only for a restricted set of prob-
lems. Being able to calculate the gradient of the loss function ex-
pands the list of available methods for optimization. However, we
still cannot obtain the derivatives with respect to parameters that
represent the procedural model’s discrete features.

To address this issue, we use the memetic algorithm [NC12],
which combines genetic algorithm with gradient-based optimiza-
tion. We start with an initial population, a set of initial parame-
ter values, which is taken from presets that have been prepared in
advance. Each preset is a set of input parameters representing an
adequate model (like those shown on Figure 2). The memetic algo-
rithm performs random mutations and recombination of the initial
population, along with gradient-based optimization. Although this
process requires several thousand iterations, it can be performed on
models with low level of detail and low rendering resolution. To
further improve the quality, we use the solution obtained from the
memetic algorithm as an initial approximation for the next round of
gradient-based optimization with higher levels of detail and higher
rendering resolution. For texture reconstruction, only the gradient-
based optimization step is performed. The results at each step are
shown in Figure 4.

6. Results

In this section, we present the results of single-view and multi-view
3D reconstruction using our method. We used both real-life photos
and rendered images as input for our algorithm. Figure 5 shows
the results of our single-view reconstruction on photos taken in an
uncontrolled environment. Our algorithm was able to accurately re-
construct the mesh for both cups with high precision. Additionally,

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

41



A. Garifullin, N. Maiorov, and V. Frolov / Differentiable Procedural Models for Single-view 3D Mesh Reconstruction

the texture was reconstructed, with some assumptions made about
the invisible areas. For the building generator, we tested two dif-
ferent reconstruction methods. The first one, "textured box", is to
create only the simplest box model and then wrap it with a recon-
structed texture, it can be enough for distant objects. The second is
to create detailed mesh but skip the texture reconstruction, as the
input resolution is not enough to catch fine texture details. Figure 6
shows the results of both methods.

Figure 5: Single-view reconstruction results with dishes procedu-
ral generator. Top row: reference images. Bottom row: reconstruc-
tion results.

Figure 6: Single-view reconstruction of building. From left to
right: reference image, window mask, result of "textured box" re-
construction, "detailed reconstruction" result with generic textures.

6.1. Comparison

We compared the proposed method with different other solutions
for 3D reconstruction to demonstrate that our approach is able to
produce visually better results even from a single input image. Fig-
ure 7 demonstrates that procedurally generated mesh has more con-
sistent structure and better restores the concave shape of input ob-
ject. Procedural model applies strict rules on model structure and
guarantees that the output mesh will have adequate structure if it is
impossible to match the input object precisely. Figure 8 shows how
an increase in the number of viewpoints affects quality of recon-
struction.

7. Conclusion and future work

In this work, we have presented a novel single-view 3D reconstruc-
tion approach that estimates the input parameters of a procedural
generator to reconstruct the model. We have implemented an ef-
ficient strategy for finding the optimal parameter set based on a
single input image. Our methods demonstrates better results com-
pared to existing approaches and produces meshes with fewer arti-
facts. However, our approach has some limitations, primarily that
it only works well on a class of objects that the underlying proce-
dural generator can create. The procedural generators used in this

Figure 7: Results using our method compared to differen-
tiable SDF reconstruction [VSJ22], InstantNGP [MESK22] and
Pixel2Mesh [WZL∗18]. We measured the average silhouette inter-
section over union (IoU) between reference and reconstructed mod-
els for 64 uniformly distributed viewpoints. Our approach is far
better than Pixel2Mesh single-view reconstruction and has compa-
rable results to multi-view reconstruction methods.

Figure 8: Results of 3D reconstruction with our approach and dif-
ferent viewpoints One viewpoint is enough for mesh reconstruction,
and further increases do not make much improvement. However,
more viewpoints allow to perform accurate texture reconstruction.

work were created from scratch and are limited in their abilities. As
future research, we plan to generalize our approach to a wider class
of objects. It requires either integrating existing generators into our
reconstruction pipeline or using generative neural networks.
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